Advertisement

Optical and Quantum Electronics

, Volume 39, Issue 12–13, pp 1071–1080 | Cite as

Investigation of all-solid photonic bandgap fiber with low losses in low-order bandgaps

  • Weijun Tong
  • Huifeng Wei
  • Jing Li
  • Honghai Wang
  • Qingrong Han
  • Jie Luo
  • Guobin Ren
  • Xia Yu
  • Ping Shum
Article

Abstract

We report synoptically an investigation of design, fabrication and characterization of a new all-solid photonic bandgap fiber. By introducing an index depressed layer around a high index core in every unit cell of photonic crystal cladding, a novel all-solid bandgap fiber is predicted to obtain low confinement and bend losses within low-order bandgaps. After optimizing the structure parameters, we fabricate a batch of rods used for cladding cells, select a pure-silica rod for core cell and an inner-hexagonal jacket tube. We demonstrate an all-solid bandgap fiber with the transmission loss as low as 2 dB/km at 1,310 nm and a bandwidth of over 700 nm within the first bandgap. The guiding properties are also measured, respectively, such as transmission spectrum, attenuation spectrum, bend loss, mode field intensity profile, and chromatic dispersion.

Keywords

Loss Bandgap Photonic crystal fibre Optical fiber 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argyros, A., Birks, T.A., Leon-Sava, S.G., Cordeiro, C.M.B., Russell, P.St.J.: Guidance properties of low-contrast photonic bandgap fibers. Opt. Express 13(7), 2503–2511 (2005)CrossRefADSGoogle Scholar
  2. Birks, T.A., Luan, F., Pearce, G.J., Wang, A., Knight, J.C., Bird, D.M.: Bend loss in all-solid bandgap fibers. Opt. Express 14(12), 5688–5698 (2006)CrossRefADSGoogle Scholar
  3. Bouwmans, G., Bigot, L., Quiquempois, Y., Lopez, F., Provino, L., Douay, M.: Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (<20 dB/km) around 1550 nm. Opt. Express 13(21), 8452–8459 (2006)CrossRefADSGoogle Scholar
  4. Cregan, R.F., Mangan, B.J., Knight, J.C., Birk, T.A., Russell, P.St.J., Roberts, P.J., Allan, D.C.: Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999)CrossRefGoogle Scholar
  5. Fink, Y., Ripin, D.J., Fan, S.H., Chen, C.P., Joannopoulos, J.D., Thomas, E.L.: Guiding optical light in air using an all-dielectric structure. IEEE J. Lightwave Technol. 17, 2039–2041 (1999)CrossRefADSGoogle Scholar
  6. Knight, J.C.: Photonic crystal fibers. Nature 424, 874–851 (2003)CrossRefGoogle Scholar
  7. Litchinitser, N.M., Dunn, S.C., Usner, B., Eggleton, B.J., White, T.P., McPhedran, R.C., de Sterke, C.M.: Resonances in microstructured optical waveguides. Opt. Express 11(9), 1243–1251 (2003)ADSCrossRefGoogle Scholar
  8. Ren, G., Shum, P., Zhang, L., Yan, M., Yu, X., Tong, W., Luo, J.: Design of all-solid bandgap fiber with improved confinement and bend losses. IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006)CrossRefADSGoogle Scholar
  9. Ren, G., Shum, P., Zhang, L., Yu, X., Tong, W., Luo, J.: Low-loss all-solid photonic bandgap fiber. Opt. Lett. 32(9), 1023–1025 (2007)CrossRefADSGoogle Scholar
  10. Stone, J.M., Pearce, G.J., Luan, F., Birks, T.A., Knight, J.C., George, A.K., Bird, D.M.: An improved photonic bandgap fiber based on an array of rings. Opt. Express 14(13), 6291–6296 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Weijun Tong
    • 1
  • Huifeng Wei
    • 1
  • Jing Li
    • 1
  • Honghai Wang
    • 1
  • Qingrong Han
    • 1
  • Jie Luo
    • 1
  • Guobin Ren
    • 2
  • Xia Yu
    • 2
  • Ping Shum
    • 2
  1. 1.R&D Centre of Yangtze Optical Fiber and Cable Co. Ltd.WuhanChina
  2. 2.Network Technology Research Centre of Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations