Skip to main content
Log in

An assessment of coherent coupling through radiation fields in time varying slab waveguides

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper presents an analytical methodology for analysing two-dimensional, dielectric slab waveguides where the guiding region is subject to abrupt and arbitrary temporal changes in permittivity. The methodology solves Maxwell’s equations in the frequency domain and recovers the solutions for the guided and radiation fields in the time domain using the Laplace transformation (LT). Explicit separation of the complete field solution into a set of guided modes and a radiation field continuum provides a clearer insight into the transient effects present in time-varying dielectric waveguides. In particular, the method is used to assess and quantify the impact of coherent radiation field coupling for arbitrary time variation of the waveguide permittivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carter S.G., Birkedal V., Wang C.S., Caldren L.A., Maslov A.V. and Shevrin M.S. (2005). Quantum cohrence in an optical modulator. Science 310: 651–653

    Article  ADS  Google Scholar 

  • Chi J.W.D., Chao C.L. and Rao M.K. (2001). Time-domain large-signal investigation on nonlinear interactions between an optical pulse and semiconductor waveguides. J. Quant. Elect. 37: 1329–1336

    Article  ADS  Google Scholar 

  • Fante R. (1971). Transmission of electromagnetic waves into time-varying media. IEEE Trans. Antenn. Propag. AP-19: 417–424

    Article  ADS  Google Scholar 

  • Fedotov F.V., Nerukh A.G., Benson T.M. and Sewell P. (2003). Investigation of electromagnetic field in a layer with time-varying medium by volterra integral equation method. J. Lightwave Technol. 21: 305–314

    Article  ADS  Google Scholar 

  • Felsen L.B. and Whitman G.M. (1970). Wave propagation in time-varying media. IEEE Trans Antenn. Propag. AP-18: 242–253

    Article  ADS  Google Scholar 

  • Hagness S.C., Joseph R.M. and Taflove A. (1996). Subpicosecond electrodynamics of distributed Bragg reflector microlasers: Results from finite difference time domain simulations. Radio Sci. 31: 931–942

    Article  ADS  Google Scholar 

  • Kalluri, D.K.: Electromagnetics of Complex Media: Frequency Shifting by a Transient Magnetoplasma. CRC Press LLC (1999)

  • Karbowiak A.E. (1957). Propagation of transients waveguides. Proc. IEEE (London) 104C: 339–349

    Google Scholar 

  • Kim Y., Lee H., Lee J., Han J., Oh T.W. and Jeong J. (2000). Chirp characteristics of 10 Gb/s electroabsorption modulator integrated DFB Lasers. IEEE J. Quant. Elect. 36: 900–908

    Article  ADS  Google Scholar 

  • Kuo S. and Ren A. (1993). Experimental study of wave propagation through a rapidly created plasma. IEEE Trans. Plasma Sci. 2: 53–56

    Article  ADS  Google Scholar 

  • Marciniak M. and Jaskorzynska B. (1995). Radiation field propagation in low-contrast single-mode optical waveguides. Opt. Quant. Elect. 27: 977–985

    Article  Google Scholar 

  • Maslov V. and Citrin D.S. (2002). Mutual transparency of coherent laser beams through a terahertz-field-driven quantum well. J. Opt. Soc. Am. B 19: 1905–1909

    Article  ADS  Google Scholar 

  • Masoudi H.M. and Arnold J.M. (1995). Modeling second-order nonlinear effects in optical waveguides using a parallel-processing beam propagation method. IEEE J. Quant. Elect. 31: 2107–2113

    Article  ADS  Google Scholar 

  • Morgenthaler F.R. (1958). Velocity Modulation of Electromagnetic Waves. IRE Trans. Microw. Theory MIT-6: 167–172

    Article  Google Scholar 

  • Nerukh A., Scherbatko I. and Nerukh D. (1997). Using evolutionary recursion to solve and electromagnetic problem with time-varying parameters. Microw. Opt. Technol. Let. 14: 31–36

    Article  Google Scholar 

  • Nerukh A.G., Scherbatko L.V. and Marciniak M. (2001). Electromagnetics of Modulated Media with Application to Photonics. National Institute of Telecommunications, Warsaw

    Google Scholar 

  • Nerukh A.G., Fedotov F.V., Benson T.M. and Sewell P. (2004a). Analytic-numerical approach to non-linear problems in dielectric waveguides. Opt. Quant. Elect. 36: 67–85

    Article  Google Scholar 

  • Nerukh A.G., Sewell P. and Benson T.M. (2004b). Volterra integral equations for nonstatinary electromagnetic processes in time-varying dielectric waveguides. J. Lightwave Technol. 22: 1408–1419

    Article  ADS  Google Scholar 

  • Sakhnenko N.K., Benson T.M., Sewell P. and Nerukh A.G. (2006). Transient Transformation of whispering gallery resonator modes due to time variations in dielectric permitivity. Opt. Quant. Elect. 38: 71–81

    Article  Google Scholar 

  • Snyder, A.W., Love, J.D.: Optical Waveguide Theory. Chapman & Hall (1983)

  • Taflove A. and Hagness S.C. (2000). Computation Electrodynamics: The Finite Difference Time-Domain Method. Artech House Inc., Boston & London

    Google Scholar 

  • Vukovic A., Bekker E.V., Sewell P. and Benson T.M. (2006). Efficient time domain modeling of Rib waveguide RF modulators. J. Lightwave Technol. 24: 5044–5053

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vukovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekker, E.V., Vukovic, A., Sewell, P. et al. An assessment of coherent coupling through radiation fields in time varying slab waveguides. Opt Quant Electron 39, 533–551 (2007). https://doi.org/10.1007/s11082-007-9104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-007-9104-6

Keywords

Navigation