Advertisement

Optical and Quantum Electronics

, Volume 39, Issue 7, pp 533–551 | Cite as

An assessment of coherent coupling through radiation fields in time varying slab waveguides

  • E. V. Bekker
  • A. Vukovic
  • P. Sewell
  • T. M. Benson
  • N. K. Sakhnenko
  • A. G. Nerukh
Article

Abstract

This paper presents an analytical methodology for analysing two-dimensional, dielectric slab waveguides where the guiding region is subject to abrupt and arbitrary temporal changes in permittivity. The methodology solves Maxwell’s equations in the frequency domain and recovers the solutions for the guided and radiation fields in the time domain using the Laplace transformation (LT). Explicit separation of the complete field solution into a set of guided modes and a radiation field continuum provides a clearer insight into the transient effects present in time-varying dielectric waveguides. In particular, the method is used to assess and quantify the impact of coherent radiation field coupling for arbitrary time variation of the waveguide permittivity.

Keywords

Time-domain analysis Time-varying media Radiation field Coherent coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carter S.G., Birkedal V., Wang C.S., Caldren L.A., Maslov A.V. and Shevrin M.S. (2005). Quantum cohrence in an optical modulator. Science 310: 651–653 CrossRefADSGoogle Scholar
  2. Chi J.W.D., Chao C.L. and Rao M.K. (2001). Time-domain large-signal investigation on nonlinear interactions between an optical pulse and semiconductor waveguides. J. Quant. Elect. 37: 1329–1336 CrossRefADSGoogle Scholar
  3. Fante R. (1971). Transmission of electromagnetic waves into time-varying media. IEEE Trans. Antenn. Propag. AP-19: 417–424 CrossRefADSGoogle Scholar
  4. Fedotov F.V., Nerukh A.G., Benson T.M. and Sewell P. (2003). Investigation of electromagnetic field in a layer with time-varying medium by volterra integral equation method. J. Lightwave Technol. 21: 305–314 CrossRefADSGoogle Scholar
  5. Felsen L.B. and Whitman G.M. (1970). Wave propagation in time-varying media. IEEE Trans Antenn. Propag. AP-18: 242–253 CrossRefADSGoogle Scholar
  6. Hagness S.C., Joseph R.M. and Taflove A. (1996). Subpicosecond electrodynamics of distributed Bragg reflector microlasers: Results from finite difference time domain simulations. Radio Sci. 31: 931–942 CrossRefADSGoogle Scholar
  7. Kalluri, D.K.: Electromagnetics of Complex Media: Frequency Shifting by a Transient Magnetoplasma. CRC Press LLC (1999)Google Scholar
  8. Karbowiak A.E. (1957). Propagation of transients waveguides. Proc. IEEE (London) 104C: 339–349 Google Scholar
  9. Kim Y., Lee H., Lee J., Han J., Oh T.W. and Jeong J. (2000). Chirp characteristics of 10 Gb/s electroabsorption modulator integrated DFB Lasers. IEEE J. Quant. Elect. 36: 900–908 CrossRefADSGoogle Scholar
  10. Kuo S. and Ren A. (1993). Experimental study of wave propagation through a rapidly created plasma. IEEE Trans. Plasma Sci. 2: 53–56 CrossRefADSGoogle Scholar
  11. Marciniak M. and Jaskorzynska B. (1995). Radiation field propagation in low-contrast single-mode optical waveguides. Opt. Quant. Elect. 27: 977–985 CrossRefGoogle Scholar
  12. Maslov V. and Citrin D.S. (2002). Mutual transparency of coherent laser beams through a terahertz-field-driven quantum well. J. Opt. Soc. Am. B 19: 1905–1909 ADSCrossRefGoogle Scholar
  13. Masoudi H.M. and Arnold J.M. (1995). Modeling second-order nonlinear effects in optical waveguides using a parallel-processing beam propagation method. IEEE J. Quant. Elect. 31: 2107–2113 CrossRefADSGoogle Scholar
  14. Morgenthaler F.R. (1958). Velocity Modulation of Electromagnetic Waves. IRE Trans. Microw. Theory MIT-6: 167–172 CrossRefGoogle Scholar
  15. Nerukh A., Scherbatko I. and Nerukh D. (1997). Using evolutionary recursion to solve and electromagnetic problem with time-varying parameters. Microw. Opt. Technol. Let. 14: 31–36 CrossRefGoogle Scholar
  16. Nerukh A.G., Scherbatko L.V. and Marciniak M. (2001). Electromagnetics of Modulated Media with Application to Photonics. National Institute of Telecommunications, Warsaw Google Scholar
  17. Nerukh A.G., Fedotov F.V., Benson T.M. and Sewell P. (2004a). Analytic-numerical approach to non-linear problems in dielectric waveguides. Opt. Quant. Elect. 36: 67–85 CrossRefGoogle Scholar
  18. Nerukh A.G., Sewell P. and Benson T.M. (2004b). Volterra integral equations for nonstatinary electromagnetic processes in time-varying dielectric waveguides. J. Lightwave Technol. 22: 1408–1419 CrossRefADSGoogle Scholar
  19. Sakhnenko N.K., Benson T.M., Sewell P. and Nerukh A.G. (2006). Transient Transformation of whispering gallery resonator modes due to time variations in dielectric permitivity. Opt. Quant. Elect. 38: 71–81 CrossRefGoogle Scholar
  20. Snyder, A.W., Love, J.D.: Optical Waveguide Theory. Chapman & Hall (1983)Google Scholar
  21. Taflove A. and Hagness S.C. (2000). Computation Electrodynamics: The Finite Difference Time-Domain Method. Artech House Inc., Boston & London Google Scholar
  22. Vukovic A., Bekker E.V., Sewell P. and Benson T.M. (2006). Efficient time domain modeling of Rib waveguide RF modulators. J. Lightwave Technol. 24: 5044–5053 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • E. V. Bekker
    • 1
  • A. Vukovic
    • 1
  • P. Sewell
    • 1
  • T. M. Benson
    • 1
  • N. K. Sakhnenko
    • 2
  • A. G. Nerukh
    • 2
  1. 1.George Green Institute for Electromagnetics ResearchUniversity of NottinghamUniversity Park, NottinghamUK
  2. 2.Kharkov National University of Radio ElectronicsKharkovUkraine

Personalised recommendations