Advertisement

Optical and Quantum Electronics

, Volume 39, Issue 2, pp 119–129 | Cite as

The PMD of sinusoidally spun fibers in the presence of random birefringence perturbations

  • Weihong Huang
  • David Yevick
Article
  • 43 Downloads

Abstract

Although fiber spinning is known to reduce polarization mode dispersion (PMD) effects in optical fibers, relatively few studies have been performed of the dependence of the reduction factor on the strength of random birefringence fluctuations. In this paper, we apply a general mathematical model of random fiber birefringence to sinusoidally spun fibers. We find that while even in the presence of random birefringence perturbations the maximum reduction of PMD is still obtained when the phase matching condition is satisfied, the degree of PMD reduction and the probability distribution function of the DGD both vary with the random birefringence profiles.

Keywords

Spun fiber Fiber birefringence Polarization mode dispersion Optical communication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Galtarossa A., Palmieri L., Schiano M., Tambosso T. (2000) Statistical characterization of fiber random birefringence. Opt. Lett. 18, 1322–1324CrossRefADSGoogle Scholar
  2. Galtarossa A., Palmieri L., Pizzinat A. (2001) Optimized spinning design for low PMD fibers: An analytical approach. J. Lightwave Technol. 19, 1502–1512CrossRefADSGoogle Scholar
  3. Galtarossa A., Griggio P., Palmieri L., Pizzinat A. (2004) First- and second-order PMD statistical properties of constantly spun randomly birefringent fibers. J. Lightwave Technol. 22, 1127–1136CrossRefADSGoogle Scholar
  4. Huang W., Yevick D. (2006a) Polarization mode dispersion in short fiber lengths. J. Opt. Soc. Am. A 23, 1509–1512CrossRefADSMathSciNetGoogle Scholar
  5. Huang, W., Yevick, D.: Improved models of optical fiber birefringence - Part I. Opt. Quant. Electron. (2007a), doi:  10.1007/s11082-007-9063-y
  6. Huang, W., Yevick, D.: Improved models of optical fiber birefringence - Part II. Quant. Electron. (2007b, accepted), doi:  10.1007/s11082-006-9032-x
  7. Kaminow I.P. (1981) Polarization in optical fibers. J. Quantum. Electron. QE-17, 15–22CrossRefADSGoogle Scholar
  8. Nolan D.A., Chen X., Li M. (2004) Fibers with low polarization-mode dispersion. J. Lightwave Technol. 22, 1066–1077CrossRefADSGoogle Scholar
  9. Poole C.D., Nagel J.A. (1997) Polarization effects in lightwave systems. In: Kaminow I.P., Koch T.L. (eds) Optical Fiber Telecommunications. vol. IIIA. Academic, San Diego, p. 114–161Google Scholar
  10. Poole C.D., Wagner R.E. (1986) Phenomenological approach to polarization dispersion in long single-mode fibers. Elec. Lett. 22, 1029–1030CrossRefGoogle Scholar
  11. Pizzinat A., Marks B.S., Palmieri L., Menyuk C.R., Galtarossa A. (2003a) Influence of the model for ramdom birefringence on the differential group delay of periodically spun fibers. J. Lightwave Technol. 15, 819–821Google Scholar
  12. Pizzinat A., Palmieri L., Marks B.S., Menyuk C.R., Galtarossa A. (2003b) Analytical treatment of randomly birefringent periodically spun fibers. J. Lightwave Technol. 21, 3355–3363CrossRefADSGoogle Scholar
  13. Wai P.K., Menyuk C.R. (1996) Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence. J. Lightwave Technol. 14, 148–157CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WaterlooWaterlooCanada

Personalised recommendations