Advertisement

Optical and Quantum Electronics

, Volume 38, Issue 12–14, pp 1091–1099 | Cite as

Optimization of microcavity OLED by varying the thickness of multi-layered mirror

  • Albert W. Lu
  • J. Chan
  • A. D. Rakić
  • Alan Man Ching Ng
  • A. B. Djurišić
Article

Abstract

We optimized the emission efficiency from a microcavity OLEDs consisting of widely used organic materials, N,N′-di(naphthalene-1-yl)-N,N′-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) (Alq3) as emitting and electron transporting layer. LiF/Al was used as a cathode, while metallic Ag was used as an anode material. A LiF/NPB bi-layer or NPB layer on top of the cathode was considered to alter the optical properties of the top mirror. The electroluminescence emission spectra, electric field distribution inside the device, carrier density, recombination rate and exciton density were calculated as a function of the position of the emission layer. The results show that for optimal capping layers thicknesses, light output is enhanced as a result of the increase in both the reflectance and transmittance of the top mirror. Once the optimum structure has been determined, the microcavity OLED devices were fabricated and characterized. The experimental results have been compared to the simulations and the influence of the thickness of the mirror layers, emission region width and position on the performance of microcavity OLEDs was discussed.

Keywords

microcavity OLEDs optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blades C.D.J. and A.B. Walker. Proceedings of Synthetic Metal 2nd International Conference on Electroluminescence of Molecular Materials and Related Phenomena May 15-May 18 1999, Vol 111, p. 335, (2000).Google Scholar
  2. Brutting, W., Berleb S., Muckl A.G. (2001). Organic Electron.: phys. mater. Appl. 2, 1Google Scholar
  3. Benisty H., Neve H., Weisbuch C. (1998). IEEE J. Quantum Electron. 34: 1612CrossRefADSGoogle Scholar
  4. Hung L.S., C.H. Chen. 39 80, (2002).Google Scholar
  5. Katsidis C.C., Siapkas D.I. (2002). Appl. Opt. 41: 3978ADSGoogle Scholar
  6. Lee C.-C., Chang M.-Y., Jong Y.-D., Huang T.-W., Chu C.-S., Chang Y. (2004). Jpn J. Appl. Phys. Part 1: Reg. Pap. Short Notes Rev. Pap. 43: 7560Google Scholar
  7. Mitsas C.L., Siapkas D.I. (1995). Appl. Opt. 34: 1678ADSCrossRefGoogle Scholar
  8. Martin S.J., Verschoor G.L.B., Webster M.A., Walker A.B., (2002). Organic Electron. 3, 129CrossRefGoogle Scholar
  9. Neyts K.A. (1998). J. Optical Soc. Am. A: Optics Image Sci. Vis. 15, 962ADSGoogle Scholar
  10. Neyts K., Visschere P.De, Fork D.K., Anderson G.B. (2000). J. Optical Soc. Am. B (Optical Phys.) 17, 114ADSGoogle Scholar
  11. Peng Y.Q., Yang J.H., Lu F.P. (2006). Appl. Phys. A, 83, 305CrossRefADSGoogle Scholar
  12. Riel H., Karg S., Beierlein T., Rielβ W. (2003). J. Appl. Phys. 94: 5290CrossRefADSGoogle Scholar
  13. Ruhstaller B., Beierlein T., Riel H., Karg S., Scott J.C., Riess W. (2003). IEEE J. Select. Top. Quant. Electron. 9, 723CrossRefGoogle Scholar
  14. Silvaco, ATLAS User Manual, Santa Clara: Silvaco International, 1, (2000).Google Scholar
  15. Tang C.W., VanSlyke S.A. (1987). Appl. Phys. Lett. 51, 913CrossRefADSGoogle Scholar
  16. Webster M.A., Auld J., Martin S.J., Walker A.B. (2004). Proc. SPIE 5214: 300CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Albert W. Lu
    • 1
  • J. Chan
    • 1
  • A. D. Rakić
    • 1
  • Alan Man Ching Ng
    • 2
  • A. B. Djurišić
    • 2
  1. 1.School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia
  2. 2.Department of PhysicsThe University of Hong KongHong KongHong Kong

Personalised recommendations