Optical and Quantum Electronics

, Volume 38, Issue 12–14, pp 973–979 | Cite as

All-optical coherent control of spin dynamics in semiconductor quantum dots

  • Gabriela Slavcheva
  • Ortwin Hess


We develop a new general model for rigorous theoretical description of circularly polarised ultrashort optical pulse interactions with the resonant non-linearities in semiconductor QDs embedded in optical waveguides and semiconductor microcavities. The method is based on the self-consistent FDTD-solution of the vector Maxwell equations coupled via macroscopic polarisation to the originally derived time-evolution equations of a discrete four-level quantum system in terms of the real pseudospin (coherence) vector exploiting the SU(4) group formalism. Selective excitation of specific spin-states with predefined helicity of the optical pulse and formation of polarised Self-Induced Transparency (SIT)-solitons in a specially prepared degenerate four-level system is numerically demonstrated. The model is applied to the stimulated optical dipole transitions of the trion state in a singly charged QD taking into account the spin relaxation dynamics. Our theoretical and numerical approach yields the time evolution of the spin population of the trion state which is in good agreement with the time-resolved polarised photoluminescence experimental data.


coherent pulse propagation finite-difference time-domain (FDTD) method Maxwell–Bloch equations optical orientation quantum dots self-induced transparency solitons spin dynamics trion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Economou S.E., Liu R.-B., Sham L.J., Steel D.G., (2005). Phys. Rev. B 71: 195327CrossRefGoogle Scholar
  2. Greilich A., Oulton R., Zhukov E.A., YugovaI.A., Yakovlev D.R., Bayer M., Shabaev A., Efros Al.L., Merkulov I.A., Stavarache V., Reuter D., Wieck A., (2006). Phys. Rev. Lett. 96: 227401CrossRefADSGoogle Scholar
  3. Hartmann A., et al., (2000). Phys. Rev. Lett. 84: 5648CrossRefADSGoogle Scholar
  4. Hioe F.T., Eberly J.H. (1981). Phys. Rev. Lett. 47: 838CrossRefADSMathSciNetGoogle Scholar
  5. Merkulov I.A., Efros Al.L., Rosen M., (2002). Phys. Rev. B 65: 205309CrossRefADSGoogle Scholar
  6. Rugar D., et al., (2004). Nature (London) 430: 329CrossRefADSGoogle Scholar
  7. Slavcheva G., Hess O., (2005). Phys. Rev. A 72: 053804CrossRefADSGoogle Scholar
  8. Shabaev A., Efros Al.L., Gammon D, Merkulov I.A., (2003). Phys. Rev. B 68: 201305CrossRefADSGoogle Scholar
  9. Taflove A., (1995). Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech, Norwood, MAMATHGoogle Scholar
  10. Tischler J.G., et al., (2002). Phys. Rev. B 66: 081310CrossRefADSGoogle Scholar
  11. Warburton R.J., et al., (2000). Nature (London) 405: 926CrossRefADSGoogle Scholar
  12. Xiao M., et al., (2004). Nature (London) 430, 435CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Advanced Technology Institute, School of Electronics and Physical SciencesUniversity of SurreyGuildfordUK

Personalised recommendations