Advertisement

Optical and Quantum Electronics

, Volume 38, Issue 8, pp 645–654 | Cite as

Photonic Crystal Power-splitter Based on Mode Splitting of Directional Coupling Waveguides

  • Hongliang Ren
  • Chun Jiang
  • Weisheng Hu
  • Mingyi Gao
  • Jingyuan Wang
Article

Abstract

In the paper, a novel power-splitting scheme based on two dimensional photonic crystal (2D PhC) is proposed. The structure can be divided into three sections, including the input waveguide, coupling region, and output region, and the latter two sections consist of two parallel waveguides placed in proximity. The operation principle of the splitter is that only one of the super-modes splitting from the directional coupler can propagate through coupling region in the frequency range of interest. The radius of air holes next to the guiding region in coupling region is increased to avoid the acute back reflection at the entrance to the input waveguide induced by the modes mismatch between the input waveguide and coupling region. While in output region, the radius of these corresponding air holes is also increased so that the two splitting super-modes have same propagation constants to avoid the coupling between the two output waveguides. Moreover, as the length of coupling region is varied, its influence on the splitting performance is discussed, and it is verified that the relationship between the splitter length and bandwidth has a trade-off.

Keywords

photonic crystal power splitting directional coupler mode splitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adibi A., Lee R.K., Xu Y., Yariv A., Scherer A. (2000). Electron. Lett. 36: 1376CrossRefGoogle Scholar
  2. Ayre M., Karle T.J., Lijun Wu., Davies T., Krauss T.F. (2005). IEEE J Select Areas Comm. 23: 1390CrossRefGoogle Scholar
  3. Boscolo S., Midrio M., Someda C.G. (2002). IEEE J. Quantum Electron. 38: 47CrossRefADSGoogle Scholar
  4. David M. Pustai, Ahmed S. Sharkawy, Shi S., Jin G., Murakowski J.A., Prather D.W. (2003). JM3 2: 292–299Google Scholar
  5. Fan S.H., John S.G., Joannopoulos J.D., Manolatou C., Haus H.A. (2001). JOSA B 18: 162ADSCrossRefGoogle Scholar
  6. John S. (1987). Phys. Rev. Lett. 58: 2486CrossRefADSGoogle Scholar
  7. Martinez A., Cuesta F., Griol A., Mira D., Garcia J., Sanchis P., Llorente R., Marti J. (2003). Appl.Phys.Lett. 83: 3033CrossRefADSGoogle Scholar
  8. Ogawa T., Yamamoto N., Watanabe Y., Komori K., Itoh M., Yatagai T. (2005). Proc. SPIE Int. Soc. Opt. Eng. 5733: 377ADSGoogle Scholar
  9. Park, I., H.-S. Lee, H.-J. Kim, K.-M. Moon, S.-G. Lee, B.-H. O, S.-G. Park and E.-H. Lee. Opt. Express 12 3599, 2004.Google Scholar
  10. Sakoda K. Optical Properties of Photonic Crystals, NY, Springer-Verlag, Berlin, Heidelberg, New York, 2004.Google Scholar
  11. Sharkawy A., Shi S., Prather D.W. (2001). Appl.Opt. 40: 2247ADSGoogle Scholar
  12. Soltani, M, A. Adibi, Y. Xu and R. Lee. Conference on Lasers and Electro-Optics (CLEO ’03), pp. 944–946, 2003.Google Scholar
  13. Yablonovitch E. (1987). Phys. Rev. Lett. 58: 2059CrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Hongliang Ren
    • 1
  • Chun Jiang
    • 1
  • Weisheng Hu
    • 1
  • Mingyi Gao
    • 1
  • Jingyuan Wang
    • 1
  1. 1.State Key Laboratory of Advanced Optical Communication Systems & NetworksShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations