Optical and Quantum Electronics

, Volume 36, Issue 12, pp 1061–1078 | Cite as

Stability of astigmatic and twisted optical lensguides

  • Davide Janner
  • Giuseppe Della Valle
  • Gianluca Galzerano
  • Stefano Longhi


We study theoretically the stability problem of ray and wave propagation in a general astigmatic and twisted paraxial optical lensguide obtained by successive rotations of a basic astigmatic optical system around its paraxial optical axis. A generalized stability condition in terms of the ray matrix elements of the basic astigmatic optical system and twist rotation angle is derived in a closed form. It is shown that, for stable (unstable) astigmatic lensguides, the introduction of the twist generally leads to the appearance of a region of ray instability (ray stability) within a finite range of twist angle due to non-orthogonal effects induced by the twist. The general theory is applied to the noteworthy continuous limit of ray and wave propagation in a twisted astigmatic graded-index optical fiber.

lensguides ray and wave propagation in astigmatic optical systems resonators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alda, J., S. Wang and E. Bernabeu. Opt. Commun. 80350, 1991.Google Scholar
  2. Abram, R.A. Opt. Commun. 12338, 1974.Google Scholar
  3. Arnaud, J.A. and H. Kogelnik. Appl. Opt. 81687, 1969.Google Scholar
  4. Arnaud, J.A. Bell Syst. Tech. J. 492311, 1970.Google Scholar
  5. Arnaud, J.A. In: ed. E. Wolf, Prog. Opt., Vol. XI, p. 249, 1973.Google Scholar
  6. Berreman, D.W. Bell Syst. Tech. J. 452117, 1965.Google Scholar
  7. Blows, J.L. and G.W. Forbes. Opt. Exp. 2 184, 1998.Google Scholar
  8. Boitsov, V.F., A.G. Vladmimirov and A.V. Nikulina. Opt. Spectr. 68 256, 1990.Google Scholar
  9. Gerrard, A. and J.M. Burch. Introduction to Matrix Methods in Optics, Wiley-Interscience, New York, 1975 (Chapter III).Google Scholar
  10. Greynolds, A.W. Proc. SPIE 560 33, 1985.Google Scholar
  11. Greynolds, A.W. Proc. SPIE 679 129, 1986.Google Scholar
  12. Hanna, D.C. IEEE J. Quant. Electron. 5 483, 1969.Google Scholar
  13. Hardy, A. Appl. Phys. 18 223, 1979.Google Scholar
  14. Hirano, J. and Y. Fukatsu. Proc. IEEE 52 1284, 1964.Google Scholar
  15. Hodgson, N. and H. Weber. Optical Resonators, Springer, London, 1996 (Chapters 1 and 2).Google Scholar
  16. Longhi, S. Opt. Commun. 176 327, 2000.Google Scholar
  17. Longhi, S. Phys. Rev. E 65 027601, 2002.Google Scholar
  18. Marcuse, D. Bell Syst. Tech. J. 43 2065, 1965.Google Scholar
  19. Onciul, D. J. Opt. 23 163, 1992.Google Scholar
  20. Siegman, A.E. Lasers, University Science Publishing, Mill-Valley, 1986 (Chapters 15-20).Google Scholar
  21. Xu, B.L.S., Y. Hu and B. Cai. Opt. Quant. Electron. 24 619, 1992.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Davide Janner
    • 1
  • Giuseppe Della Valle
    • 1
  • Gianluca Galzerano
    • 1
  • Stefano Longhi
    • 1
  1. 1.Dipartimento di Fisica and IFN-CNR, Politecnico di MilanoIstituto Nazionale per la Fisica della MateriaMilanoItaly

Personalised recommendations