New hybrid projection methods for variational inequalities involving pseudomonotone mappings

Abstract

In this paper, we combine the subgradient extragradient method and the hybrid method with inertial extrapolation step to introduce two strongly convergent methods for solving variational inequalities for which the underlying cost function is a pseudo-monotone operator in real Hilbert spaces. The first proposed method involves step-sizes bounded by the inverse of the Lipschitz constant of the cost function and the second proposed method involves line search approach when the cost function is uniformly continuous. Our strong convergence results are obtained under some relaxed conditions on the inertial factor and the iterative parameters. Our numerical implementations show that our proposed methods are competitive and efficient.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Alvarez F, Attouch H (2001) An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set Valued Anal 9:3–11

    MathSciNet  Article  Google Scholar 

  2. Bauschke HH, Combettes PL (2011) Convex analysis and monotone operator theory in Hilbert spaces, CMS books in mathematics. Springer, New York

    Google Scholar 

  3. Cai G, Gibali A, Iyiola OS, Shehu Y (2018) A new double-projection method for solving variational inequalities in Banach space. J Optim Theory Appl 178:219–239

    MathSciNet  Article  Google Scholar 

  4. Censor Y, Gibali A, Reich S (2011) The subgradient extragradientmethod for solving variational inequalities in Hilbert space. J Optim Theory Appl 148:318–335

    MathSciNet  Article  Google Scholar 

  5. Censor Y, Gibali A, Reich S (2011) Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim Meth Softw 26:827–845

    MathSciNet  Article  Google Scholar 

  6. Censor Y, Gibali A, Reich S (2012) Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61:1119–1132

    MathSciNet  Article  Google Scholar 

  7. Cottle RW, Yao JC (1992) Pseudo-monotone complementarity problems in Hilbert space. J Optim Theory Appl 75:281–295

    MathSciNet  Article  Google Scholar 

  8. Denisov SV, Semenov VV, Chabak LM (2015) Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybern Syst Anal 51:757–765

    MathSciNet  Article  Google Scholar 

  9. Deepho J, Kumam W, Kumam P (2014) A new hybrid projection algorithm for solving the split generalized equilibrium problems and the system of variational inequality problems. J Math Model Algorithms 13:405–423

    MathSciNet  Article  Google Scholar 

  10. Fichera G (1963) Sul problema elastostatico di Signorini con ambigue condizioni al contorno. Atti Accad Naz Lincei VIII Ser Rend Cl Sci Fis Mat Nat 34:138–142

    MathSciNet  MATH  Google Scholar 

  11. Fichera G (1964) Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Atti Accad Naz Lincei Mem Cl Sci Fis Mat Nat Sez I VIII Ser 7:91–140

    MathSciNet  MATH  Google Scholar 

  12. Facchinei F, Pang JS (2003) Finite-dimensional variational inequalities and complementarity problems. Springer series in operations research, vols I and II. Springer, New York

    Google Scholar 

  13. Goebel K, Reich S (1984) Uniform convexity, hyperbolic geometry, and nonexpansive mappings. Marcel Dekker, New York

    Google Scholar 

  14. He BS, Liao LZ (2002) Improvements of some projection methods for monotone nonlinear variational inequalities. J Optim Theory Appl 112:111–128

    MathSciNet  Article  Google Scholar 

  15. Hieu DV, Anh PK, Muu LD (2017) Modified hybrid projection methods for finding common solutions to variational inequality problems. Comput Optim Appl 66:75–96

    MathSciNet  Article  Google Scholar 

  16. Hieu DV, Cho YJ, Xiao YB, Kumam P (2019) Relaxed extragradient algorithm for solving pseudomonotone variational inequalities in Hilbert spaces. Optimization. https://doi.org/10.1080/02331934.2019.1683554

    Article  Google Scholar 

  17. Iusem AN, Nasri M (2011) Korpelevich’s method for variational inequality problems in Banach spaces. J Global Optim 50:59–76

    MathSciNet  Article  Google Scholar 

  18. Korpelevich GM (1976) The extragradient method for finding saddle points and other problems. Ekonomikai Matematicheskie Metody 12:747–756

    MathSciNet  MATH  Google Scholar 

  19. Kraikaew R, Saejung S (2014) Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J Optim Theory Appl 163:399–412

    MathSciNet  Article  Google Scholar 

  20. Konnov IV (2007) Equilibrium models and variational inequalities. Elsevier, Amsterdam, Boston, Heidelberg, London, New York

    Google Scholar 

  21. Malitsky YV, Semenov VV (2014) An extragradient algorithm for monotone variational inequalities. Cybern Syst Anal 50:271–277

    MathSciNet  Article  Google Scholar 

  22. Malitsky YV (2015) Projected reflected gradient methods for monotone variational inequalities. SIAM J Optim 25:502–520

    MathSciNet  Article  Google Scholar 

  23. Maingé P (2016) Numerical approach to monotone variational inequalities by a one-step projected reflected gradient method with line-search procedure. Comput Math Appl 72:720–728

    MathSciNet  Article  Google Scholar 

  24. Maingé P, Gobinddass ML (2016) Convergence of one-step projected gradient methods for variational inequalities. J Optim Theory Appl 171:146–168

    MathSciNet  Article  Google Scholar 

  25. Martinez CY, Xu HK (2006) Strong convergence of the CQ method for fixed point iteration processes. Nonlinear Anal 64:2400–2411

    MathSciNet  Article  Google Scholar 

  26. Nadezhkina N, Takahashi W (2006) Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J Optim Theor Appl 128:191–201

    MathSciNet  Article  Google Scholar 

  27. Nakajo K, Takahashi W (2003) Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J Math Anal Appl 279:372–379

    MathSciNet  Article  Google Scholar 

  28. Nadezhkina N, Takahashi W (2006) Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings. SIAM J Optim 16:1230–1241

    MathSciNet  Article  Google Scholar 

  29. Phuangphoo P, Kumam P (2013) A new hybrid projection algorithmfor system of equilibrium problems and variational inequality problems and two finite families of quasi-\(\phi\)-nonexpansive mappings. Abstract Appl Anal 2013, Article ID 107296, 13 p

  30. Saewan S, Kumam P, Wattanawitoon K (2010) Convergence theorem based on a new hybrid projection method for finding a common solution of generalized equilibrium and variational inequality problems in Banach spaces. Abstract Appl Anal 2010, Article ID 734126, 25 p

  31. Shehu Y, Dong QL, Jiang D (2019) Single projection method for pseudo-monotone variational inequality in Hilbert spaces. Optimization 68:385–409

    MathSciNet  Article  Google Scholar 

  32. Shehu Y, Li XH, Dong QL (2019) An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numer Algorithm. https://doi.org/10.1007/s11075-019-00758-y

    Article  MATH  Google Scholar 

  33. Solodov MV, Svaiter BF (2000) Forcing strong convergence of proximal point iterations in a Hilbert space. Math Prog 87:189–202

    MathSciNet  Article  Google Scholar 

  34. Thong DV, Hieu DV (2018) Modified subgradient extragradient method for inequality variational problems. Numer Algorithms 79:597–610

    MathSciNet  Article  Google Scholar 

  35. Thong DV, Vuong PT (2019) Modifed Tseng’s extragradient methods for solving pseudomonotone variational inequalities. Optimization 68:2203–2222

    MathSciNet  MATH  Google Scholar 

  36. Thong DV, Vinh NT, Hieu DV (2019) Accelerated hybrid and shrinking projection methods for variational inequality problems. Optimization 68:981–998

    MathSciNet  Article  Google Scholar 

  37. Toint PhL (1988) Global convergence of a class of trust region methods for nonconvex minimization in Hilbert space. IMA J Numer Anal 8:231–252

    MathSciNet  Article  Google Scholar 

  38. Vuong PT (2018) On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities. J Optim Theory Appl 176:399–409

    MathSciNet  Article  Google Scholar 

  39. Vuong PT, Shehu Y (2019) Convergence of an extragradient-type method for variational inequality with applications to optimal control problems. Numer Algorithms 81:269–291

    MathSciNet  Article  Google Scholar 

  40. Wattanawitoon K, Kumam P (2009) Corrigendum to Strong convergence theorems by a new hybrid projection algorithm for fixed point problems and equilibrium problems of two relatively quasi-nonexpansive mappings. Nonlinear Anal Hybrid Syst 3:11–20

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Editor and two referees for their valuable comments and suggestions which helped us very much in improving and presenting the original version of this paper. This research is funded by National Economics University, Hanoi, Vietnam.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Duong Viet Thong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thong, D.V., Shehu, Y., Iyiola, O.S. et al. New hybrid projection methods for variational inequalities involving pseudomonotone mappings. Optim Eng (2020). https://doi.org/10.1007/s11081-020-09518-7

Download citation

Keywords

  • Variational inequality problem
  • Subgradient extragradient method
  • Inertial method
  • Hybrid projection method

Mathematics Subject Classification

  • 47H09
  • 47J20
  • 65K15
  • 90C25