Skip to main content
Log in

New SOCP relaxation and branching rule for bipartite bilinear programs

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

A bipartite bilinear program (BBP) is a quadratically constrained quadratic optimization problem where the variables can be partitioned into two sets such that fixing the variables in any one of the sets results in a linear program. We propose a new second order cone representable (SOCP) relaxation for BBP, which we show is stronger than the standard SDP relaxation intersected with the boolean quadratic polytope. We then propose a new branching rule inspired by the construction of the SOCP relaxation. We describe a new application of BBP called as the finite element model updating problem, which is a fundamental problem in structural engineering. Our computational experiments on this problem class show that the new branching rule together with an polyhedral outer approximation of the SOCP relaxation outperforms a state-of-the-art commercial global solver in obtaining dual bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Khayyal FA, Falk JE (1983) Jointly constrained biconvex programming. Math Oper Res 8(2):273–286

    Article  MathSciNet  MATH  Google Scholar 

  • Belotti P, Lee J, Liberti L, Margot F, Wächter A (2009) Branching and bounds tightening techniques for non-convex MINLP. Optim Methods Softw 24(4–5):597–634

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization: analysis, algorithms, and engineering applications. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Bodur M, Del Pia A, Dey SS, Molinaro M, Pokutta S (2017) Aggregation-based cutting-planes for packing and covering integer programs. Math Program 171:331–359

    Article  MathSciNet  MATH  Google Scholar 

  • Boland N, Dey SS, Kalinowski T, Molinaro M, Rigterink F (2017) Bounding the gap between the mccormick relaxation and the convex hull for bilinear functions. Math Program 162(1–2):523–535

    Article  MathSciNet  MATH  Google Scholar 

  • Burer S, Letchford AN (2009) On nonconvex quadratic programming with box constraints. SIAM J Optim 20(2):1073–1089

    Article  MathSciNet  MATH  Google Scholar 

  • Burer S, Kim S, Kojima M (2014) Faster, but weaker, relaxations for quadratically constrained quadratic programs. Comput Optim Appl 59(1):27–45

    Article  MathSciNet  MATH  Google Scholar 

  • Castro PM (2015) Tightening piecewise mccormick relaxations for bilinear problems. Comput Chem Eng 72:300–311

    Article  Google Scholar 

  • Crowder H, Johnson EL, Padberg M (1983) Solving large-scale zero-one linear programming problems. Oper Res 31(5):803–834

    Article  MATH  Google Scholar 

  • Davarnia D, Richard J-PP, Tawarmalani M (2017) Simultaneous convexification of bilinear functions over polytopes with application to network interdiction. SIAM J Optim 27(3):1801–1833

    Article  MathSciNet  MATH  Google Scholar 

  • Dey SS, Gupte A (2015) Analysis of milp techniques for the pooling problem. Oper Res 63(2):412–427

    Article  MathSciNet  MATH  Google Scholar 

  • Dey SS, Molinaro M, Wang Q (2017) Analysis of sparse cutting planes for sparse milps with applications to stochastic milps. Math Oper Res 43:304–332

    Article  MathSciNet  Google Scholar 

  • Faria DC, Bagajewicz MJ (2011) Novel bound contraction procedure for global optimization of bilinear minlp problems with applications to water management problems. Comput Chem Eng 35(3):446–455

    Article  Google Scholar 

  • Galan B, Grossmann IE (1998) Optimal design of distributed wastewater treatment networks. Ind Eng Chem Res 37(10):4036–4048

    Article  Google Scholar 

  • Gorski J, Pfeuffer F, Klamroth K (2007) Biconvex sets and optimization with biconvex functions: a survey and extensions. Math Methods Oper Res 66(3):373–407

    Article  MathSciNet  MATH  Google Scholar 

  • Gupte A (2011) Mixed integer bilinear programming with applications to the pooling problem. Ph.D. thesis, Georgia Institute of Technology

  • Gupte A, Ahmed S, Dey SS, Cheon M-S (2017) Relaxations and discretizations for the pooling problem. J Global Optim 67(3):631–669

    Article  MathSciNet  MATH  Google Scholar 

  • Gupte A, Kalinowski T, Rigterink F, Waterer H Extended formulations for convex hulls of graphs of bilinear functions (Unpublished)

  • Haverly CA (1978) Studies of the behavior of recursion for the pooling problem. Acm Sigmap Bull 25:19–28

    Article  Google Scholar 

  • Hillestad RJ, Jacobsen SE (1980) Linear programs with an additional reverse convex constraint. Appl Math Optim 6(1):257–269

    Article  MathSciNet  MATH  Google Scholar 

  • Kim S, Kojima M (2001) Second order cone programming relaxation of nonconvex quadratic optimization problems. Optim Methods Softw 15(3–4):201–224

    Article  MathSciNet  MATH  Google Scholar 

  • Kocuk B, Dey SS, Andy SX (2017) Matrix minor reformulation and socp-based spatial branch-and-cut method for the ac optimal power flow problem. arXiv preprint arXiv:1703.03050

  • Linderoth J (2005) A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math Program 103(2):251–282

    Article  MathSciNet  MATH  Google Scholar 

  • Luedtke JR, Namazifar M, Linderoth J (2012) Some results on the strength of relaxations of multilinear functions. Math Program 136(2):325–351

    Article  MathSciNet  MATH  Google Scholar 

  • Marchand H, Wolsey LA (2001) Aggregation and mixed integer rounding to solve mips. Oper Res 49(3):363–371

    Article  MathSciNet  MATH  Google Scholar 

  • Meyer CA, Floudas CA (2005) Convex envelopes for edge-concave functions. Math Program 103(2):207–224

    Article  MathSciNet  MATH  Google Scholar 

  • Meyer CA, Floudas CA (2006) Global optimization of a combinatorially complex generalized pooling problem. AIChE J 52(3):1027–1037

    Article  Google Scholar 

  • Misener R, Floudas CA (2014) ANTIGONE: algorithms for coNTinuous/integer global optimization of nonlinear equations. J Global Optim 59(2–3):503–526

    Article  MathSciNet  MATH  Google Scholar 

  • Nahapetyan AG (2008) Bilinear programming: applications in the supply chain management bilinear programming: applications in the supply chain management. In: Floudas CA, Pardalos PM (eds) Encyclopedia of optimization. Springer, Berlin, pp 282–288

    Google Scholar 

  • Nguyen TT, Tawarmalani M, Richard J-PP (2011) Convexification techniques for linear complementarity constraints. In: IPCO, vol 6655. Springer, pp 336–348

  • Nguyen TT, Richard J-PP, Tawarmalani M (2013) Deriving the convex hull of a polynomial partitioning set through lifting and projection. Technical report, working paper

  • Nguyen TT, Richard J-PP, Tawarmalani M (2018) Deriving convex hulls through lifting and projection. Math Program 169(2):377–415

    Article  MathSciNet  MATH  Google Scholar 

  • Padberg M (1989) The boolean quadric polytope: some characteristics, facets and relatives. Math Program 45(1–3):139–172

    Article  MathSciNet  MATH  Google Scholar 

  • Rahman H, Mahajan A (2017) Facets of a mixed-integer bilinear covering set with bounds on variables. arXiv preprint arXiv:1707.06712

  • Rikun AD (1997) A convex envelope formula for multilinear functions. J Global Optim 10(4):425–437

    Article  MathSciNet  MATH  Google Scholar 

  • Ryoo HS, Sahinidis NV (1996) A branch-and-reduce approach to global optimization. J Global Optim 8(2):107–138

    Article  MathSciNet  MATH  Google Scholar 

  • Sahinidis NV, Tawarmalani M (2005) Accelerating branch-and-bound through a modeling language construct for relaxation-specific constraints. J Global Optim 32(2):259–280

    Article  MathSciNet  MATH  Google Scholar 

  • Speakman E, Lee J (2017) On branching-point selection for triple products in spatial branch-and-bound: the hull relaxation. arXiv preprint arXiv:1706.08438

  • Tawarmalani M, Richard J-PP (2013) Decomposition techniques in convexification of inequalities. Technical report

  • Tawarmalani M, Sahinidis NV (2002) Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications, vol 65. Springer, Berlin

    Book  MATH  Google Scholar 

  • Tawarmalani M, Richard J-PP, Chung K (2010) Strong valid inequalities for orthogonal disjunctions and bilinear covering sets. Math Program 124(1):481–512

    Article  MathSciNet  MATH  Google Scholar 

  • Tawarmalani M, Richard J-PP, Xiong C (2013) Explicit convex and concave envelopes through polyhedral subdivisions. Math Program 138:1–47

    Article  MathSciNet  MATH  Google Scholar 

  • Tuy H (2016) Convex analysis and global optimization, vol 110. Springer, Berlin

    Book  MATH  Google Scholar 

  • Vigerske S, Gleixner A (2018) SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework. Optim Methods Softw 33(3):563–593

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu D, Dong X, Wang Y (2016) Substructure stiffness and mass updating through minimization of modal dynamic residuals. J Eng Mech 142(5):04016013

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Xinjun Dong in Civil and Environmental Engineering at Georgia Tech, for his assistance with preparing the structural example data. Santanu S. Dey would like to acknowledge the discussion on a preliminary version of this paper at Dagstuhl workshop #18081, that helped improve the paper.

Funding

This work was supported by the NSF CMMI [Grant No. 1149400]; the NSF CMMI [Grant No. 1150700]; and the CNPq-Brazil [Grant No. 248941/2013-5].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asteroide Santana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S.S., Santana, A. & Wang, Y. New SOCP relaxation and branching rule for bipartite bilinear programs. Optim Eng 20, 307–336 (2019). https://doi.org/10.1007/s11081-018-9402-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-018-9402-9

Keywords

Navigation