Skip to main content
Log in

Locally weighted regression models for surrogate-assisted design optimization

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

We consider engineering design optimization problems where the objective and/or constraint functions are evaluated by means of computationally expensive blackboxes. Our practical optimization strategy consists of solving surrogate optimization problems in the search step of the mesh adaptive direct search algorithm. In this paper, we consider locally weighted regression models to build the necessary surrogates, and present three ideas for appropriate and effective use of locally weighted scatterplot smoothing (LOWESS) models for surrogate optimization. First, a method is proposed to reduce the computational cost of LOWESS models. Second, a local scaling coefficient is introduced to adapt LOWESS models to the density of neighboring points while retaining smoothness. Finally, an appropriate order error metric is used to select the optimal shape coefficient of the LOWESS model. Our surrogate-assisted optimization approach utilizes LOWESS models to both generate and rank promising candidates found in the search and poll steps. The “real” blackbox functions that govern the original optimization problem are then evaluated at these ranked candidates with an opportunistic strategy, reducing CPU time significantly. Computational results are reported for four engineering design problems with up to six variables and six constraints. The results demonstrate the effectiveness of the LOWESS models as well as the order error metric for surrogate optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. A nychthemeron is a time period of 24 consecutive hours.

References

  • Abramson MA, Audet C, Couture G, Dennis JE Jr, Le Digabel S, Tribes C (2015) The NOMAD project. Software available at https://www.gerad.ca/nomad

  • Acar E, Rais-Rohani M (2009) Ensemble of metamodels with optimized weight factors. Struct Multidiscip Optim 37(3):279–294

    Article  Google Scholar 

  • Adams BM, Ebeida MS, Eldred MS, Geraci G, Jakeman JD, Maupin KA, Monschke JA, Swiler LP, Stephens JA, Vigil DM, Wildey TM, Bohnhoff WJ, Dalbey KR, Eddy JP, Frye JR, Hooper RW, Hu KT, Hough PD, Khalil M, Ridgway EM, Rushdi A (2014) Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 6.6 users manual. Technical report SAND2014-4633, Sandia National Laboratories

  • Arora J (2004) Introduction to optimum design. Academic Press, London

    Google Scholar 

  • Atkeson CG, Moore AW, Schaal S (1997) Locally weighted learning for control. Artif Intell Rev 11(1):11–73

    Article  Google Scholar 

  • Audet C, Dennis JE Jr (2006) Mesh adaptive direct search algorithms for constrained optimization. SIAM J Optim 17(1):188–217

    Article  MathSciNet  MATH  Google Scholar 

  • Audet C, Dennis JE Jr (2009) A progressive barrier for derivative-free nonlinear programming. SIAM J Optim 20(1):445–472

    Article  MathSciNet  MATH  Google Scholar 

  • Audet C, Kokkolaras M, Le Digabel S, Talgorn B (2017) Order-based error for managing ensembles of surrogates in mesh adaptive direct search. J Glob Optim. ISSN: 1573-2916. https://doi.org/10.1007/s10898-017-0574-1

  • Belegundu AD (1982) A study of mathematical programming methods for structural optimization. University of Iowa, Iowa City

    Google Scholar 

  • Booker AJ, Dennis JE Jr, Frank PD, Serafini DB, Torczon V, Trosset MW (1999) A rigorous framework for optimization of expensive functions by surrogates. Struct Multidiscip Optim 17(1):1–13

    Article  Google Scholar 

  • Chen X, Kelley CT (2016) Optimization with hidden constraints and embedded Monte Carlo computations. Optim Eng 17(1):157–175

    Article  MathSciNet  MATH  Google Scholar 

  • Choi SC, Wette R (1969) Maximum likelihood estimation of the parameters of the Gamma distribution and their bias. Technometrics 11(4):683–690

    Article  MATH  Google Scholar 

  • Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836

    Article  MathSciNet  MATH  Google Scholar 

  • Cleveland WS (1981) LOWESS: a program for smoothing scatterplots by robust locally weighted regression. Am Stat 35(1):54

    Article  Google Scholar 

  • Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610

    Article  MATH  Google Scholar 

  • Cleveland WS, Devlin SJ, Grosse E (1988) Regression by local fitting: methods, properties, and computational algorithms. J Econ 37(1):87–114

    Article  MathSciNet  Google Scholar 

  • Cohen RA (1999) An introduction to PROC LOESS for local regression. In: Proceedings of the 24th SAS users group international conference. http://www.ats.ucla.edu/stat/SAS/library/

  • Conn AR, Le Digabel S (2013) Use of quadratic models with mesh-adaptive direct search for constrained black box optimization. Optim Methods Softw 28(1):139–158

    Article  MathSciNet  MATH  Google Scholar 

  • Efron B (1983) Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc 78(382):316–331

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J (1993) Local linear regression smoothers and their minimax efficiencies. Ann Stat 21(1):196–216

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J, Gijbels I (1992) Variable bandwidth and local linear regression smoothers. Ann Stat 20(4):2008–2036

    Article  MathSciNet  MATH  Google Scholar 

  • Fletcher R, Leyffer S (2002) Nonlinear programming without a penalty function. Math Program Ser A 91:239–269

    Article  MathSciNet  MATH  Google Scholar 

  • Gablonsky J (2001) DIRECT version 2.0 userguide technical report. Technical report CRSC-TR01-08, North Carolina State University, Center for Research in Scientific Computation, Raleigh, NC

  • Garg H (2014) Solving structural engineering design optimization problems using an artificial bee colony algorithm. J Ind Manag Optim 10(3):777–794

    Article  MathSciNet  MATH  Google Scholar 

  • Garneau M Lemyre (2015) Modelling of a solar thermal power plant for benchmarking blackbox optimization solvers. Master’s thesis, École Polytechnique de Montréal. https://publications.polymtl.ca/1996/

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning, 1st edn. Addison-Wesley, Boston

    MATH  Google Scholar 

  • Gramacy RB, Gray GA, Le Digabel S, Lee HKH, Ranjan P, Wells G, Wild SM (2016) Modeling an augmented Lagrangian for blackbox constrained optimization. Technometrics 58(1):1–11

    Article  MathSciNet  Google Scholar 

  • Gramacy RB, Le Digabel S (2015) The mesh adaptive direct search algorithm with treed Gaussian process surrogates. Pac J Optim 11(3):419–447

    MathSciNet  MATH  Google Scholar 

  • Haftka RT, Gurdal Z (1992) Elements of structural optimization, volume 11 of solid mechanics and its applications. Springer, Berlin

    Book  MATH  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer series in statistics. Springer, New York

    Book  MATH  Google Scholar 

  • Kannan A, Wild SM (2012) Benefits of deeper analysis in simulation-based groundwater optimization problems. In: Proceedings of the XIX international conference on computational methods in water resources (CMWR 2012)

  • Lall U, Moon YI, Kwon HH, Bosworth K (2006) Locally weighted polynomial regression: parameter choice and application to forecasts of the Great Salt Lake. Water Resour Res 42(W05422):1–11

    Google Scholar 

  • Le Digabel S (2011) Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans Math Softw 37(4):44:1–44:15

    Article  MathSciNet  MATH  Google Scholar 

  • Le Digabel S, Wild SM (2015) A taxonomy of constraints in simulation-based optimization. Technical report G-2015-57, Les cahiers du GERAD

  • Loader C (1999) Local regression and likelihood. Springer, New York

    MATH  Google Scholar 

  • Macaulay FR (1931) Curve fitting and graduation. In: The smoothing of time series. National Bureau of Economic Research. NBER, pp 31–42

  • Matott LS, Rabideau AJ, Craig JR (2006) Pump-and-treat optimization using analytic element method flow models. Adv Water Resour 29(5):760–775

    Article  Google Scholar 

  • Matott LS, Leung K, Sim J (2011) Application of MATLAB and Python optimizers to two case studies involving groundwater flow and contaminant transport modeling. Comput Geosci 37(11):1894–1899

    Article  Google Scholar 

  • McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245

    MathSciNet  MATH  Google Scholar 

  • Minka TP (2002) Estimating a Gamma distribution. https://tminka.github.io/papers/minka-gamma.pdf

  • Moré JJ, Wild SM (2009) Benchmarking derivative-free optimization algorithms. SIAM J Optim 20(1):172–191

    Article  MathSciNet  MATH  Google Scholar 

  • Müller H-G (1987) Weighted local regression and Kernel methods for nonparametric curve fitting. J Am Stat Assoc 82(397):231–238

    MathSciNet  MATH  Google Scholar 

  • Müller J, Piché R (2011) Mixture surrogate models based on Dempster–Shafer theory for global optimization problems. J Global Optim 51(1):79–104

    Article  MathSciNet  MATH  Google Scholar 

  • Natrella M (2010) NIST/SEMATECH e-handbook of statistical methods. NIST/SEMATECH. https://www.itl.nist.gov/div898/handbook/

  • Orr MJL (1996) Introduction to radial basis function networks. Technical report, Center for Cognitive Science, University of Edinburgh

  • Pourmohamad T (2016) Combining multivariate stochastic process models with filter methods for constrained optimization. Ph.D. thesis. UC Santa Cruz: Statistics and Applied Mathematics

  • Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Tucher PK (2005) Surrogate-based analysis and optimization. Prog Aerosp Sci 41(1):1–28

    Article  Google Scholar 

  • Ruppert D, Wand MP (1994) Multivariate locally weighted least squares regression. Ann Stat 22(3):1346–1370

    Article  MathSciNet  MATH  Google Scholar 

  • Stone M (1977) An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. J Roy Stat Soc Ser B (Methodol) 39(1):44–47

    MathSciNet  MATH  Google Scholar 

  • Ting J-A, Vijayakumar S, Schaal S (2010) Locally weighted regression for control. Springer, Boston, pp 613–624

    Google Scholar 

  • Wilks DS (1990) Maximum likelihood estimation for the Gamma distribution using data containing zeros. J Clim 3(12):1495–1501

    Article  Google Scholar 

Download references

Acknowledgements

All the authors acknowledge the partial support of FRQNT Grant PR-182098; B. Talgorn and M. Kokkolaras are also grateful for the partial support of NSERC/Hydro-Québec Grant EGP2 498903-16; such support does not constitute an endorsement by the sponsors of the opinions expressed in this article. B. Talgorn would like to thank Stéphane Alarie of IREQ, Patricia Gillett-Kawamoto of GERAD and Sylvain Arreckx of GERAD for their invaluable insights and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastien Talgorn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talgorn, B., Audet, C., Le Digabel, S. et al. Locally weighted regression models for surrogate-assisted design optimization. Optim Eng 19, 213–238 (2018). https://doi.org/10.1007/s11081-017-9370-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-017-9370-5

Keywords

Navigation