Optimization and Engineering

, Volume 19, Issue 1, pp 163–185 | Cite as

Active thermography setup updating for NDE: a comparative study of regression techniques and optimisation routines with high contrast parameter influences for thermal problems

  • J. Peeters
  • E. Louarroudi
  • B. Bogaerts
  • S. Sels
  • J. J. J. Dirckx
  • G. Steenackers


An implementation of updating techniques similar to finite element updating in structural dynamics is developed for thermal material inspection using adaptive response surfaces to approximate experimental parameters. In general, thermal models contain high nonlinearities in their parameters, which influences updating accuracies. This is further investigated in this work. Several adaptive response surface regression methods are compared: interpolation, piecewise spline and polynomial regression functions. Next, the influence of the choice of optimisation parameters is discussed and compared with several global and local optimisation routines. Finally, a well-suited regression technique is investigated which transforms the dataset to a smaller, focused response model in each optimisation loop and delivers a proper regression accuracy. This results in data-reduction for the model to be optimised.


Pulsed thermography FE model updating (FEMU) Gradient based optimisation Genetic optimisation Inverse problem Simplex method Evolutionary strategy Nondestructive evaluation 



This research has been funded by the University of Antwerp and the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT) by the support to the TETRA project ‘SINT’ with Project Number HBC.2017.0032. Furthermore, the research leading to these results has received funding from Industrial Research Fund FWO Krediet aan navorsers and the FWO travel Grant V4.010.16N. The authors also acknowledge the Flemish government (GOA-Optimech) and the research council of the University of Antwerp (fti-OZC) for its funding.


  1. Abd El-Ghany KM, Farag MM (2000) Expert system to automate the finite element analysis for non-destructive testing. NDT E Int 33(6):409–415. doi: 10.1016/S0963-8695(00)00009-8 CrossRefGoogle Scholar
  2. Alfeld P (1989) Scattered data interpolation in three or more variables. Math Methods Comput Aided Geom Des 1–33.
  3. Azadeh A, Ghaderi SF, Sheikhalishahi M, Nokhandan BP (2014) Optimization of short load forecasting in electricity market of Iran using artificial neural networks. Optim Eng. doi: 10.1007/s11081-012-9200-8 Google Scholar
  4. Bajzer Z, Penzar I (1999) Strategic simplex algorithm. Mayo Clinic and Foundation, Rochester, Minnesota. Software documentation Matlab toolbox:
  5. Bergman TL, Lavine AS, Incropera FP, DeWitt DP (2011) Fundamentals of heat and mass transfer, 7th edn. Wiley, HobokenGoogle Scholar
  6. Brown P, Hindmarsh A, Petzold L (1994) Using Krylov methods in the solution of large-scale differential-algebraic systems. SIAM J Sci Comput 15:1467–1488MathSciNetCrossRefMATHGoogle Scholar
  7. Busse G (1979) Optoacoustic phase angle measurement for probing a metal. Appl Phys Lett 35(10):759–760CrossRefGoogle Scholar
  8. Cannavó F (2012) Sensitivity analysis for volcanic source modeling quality assessment and model selection. Comput Geosci 44:52–59. doi: 10.1016/j.cageo.2012.03.008 CrossRefGoogle Scholar
  9. Chapman AJ (1984) Heat transfer, 4th edn. Macmillan, New YorkGoogle Scholar
  10. Chaudhuri P, Santra P, Yoele S, Prakash A, Reddy D, Lachhvani L, Govindarajan J, Saxena Y (2006) Non-destructive evaluation of brazed joints between cooling tube and heat sink by IR thermography and its verification using FE analysis. NDT E Int 39(2):88–95. doi: 10.1016/j.ndteint.2005.08.002 CrossRefGoogle Scholar
  11. Cheng H-C, Tsai Y-H, Chen K-N, Fang J (2010) Thermal placement optimization of multichip modules using a sequential metamodeling-based optimization approach. Appl Therm Eng 30(17–18):2632–2642. doi: 10.1016/j.applthermaleng.2010.07.004 CrossRefGoogle Scholar
  12. Coleman T, Li Y (1996) An interior trust region approach for nonlinear minimization subject to bounds. SIAM J Optim. doi: 10.1137/0806023 MathSciNetMATHGoogle Scholar
  13. Comsol Multiphysics (2015) Comsol documentationGoogle Scholar
  14. Cukier RI, Fortuin CM, Shuler KE, Petschek AG, Schaibly JH (1973) Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I theory. J Chem Phys 59(8):3873–3878. doi: 10.1063/1.1680571 CrossRefGoogle Scholar
  15. Dashora P, Gupta G, Dashora J (2005) Thermal conductivity, diffusivity and heat capacity of plasticized polyvinyl chloride. Indian J Pure Appl Phys 43(February):132–136.
  16. Fang SE, Perera R (2009) A response surface methodology based damage identification technique. Smart Mater Struct 18(6):065009. doi: 10.1088/0964-1726/18/6/065009 CrossRefGoogle Scholar
  17. Faravelli L, Casciati S (2004) Structural damage detection and localization by response change diagnosis. Prog Struct Eng Mater 6(2):104–115. doi: 10.1002/pse.171 CrossRefGoogle Scholar
  18. Foti D, Diaferio M, Giannoccaro NI, Mongelli M (2012) Ambient vibration testing, dynamic identification and model updating of a historic tower. NDT E Int 47:88–95. doi: 10.1016/j.ndteint.2011.11.009 CrossRefGoogle Scholar
  19. Granta Design Limited (2013) CES Edupack 2013Google Scholar
  20. Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993. doi: 10.1109/72.329697 CrossRefGoogle Scholar
  21. Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on multimodal test functions. In: 8th international conference on parallel problem solving from nature PPSN VIII, Springer, pp 282–291Google Scholar
  22. Hosder S, Watson LT, Grossman B, Mason WH, Kim H, Haftka RT, Cox SE (2001) Polynomial response surface approximations for the multidisciplinary design optimization of a high speed civil transport. Optim Eng 2(4):431–452CrossRefMATHGoogle Scholar
  23. Ibarra-Castanedo C, Maldague XPV (2005) Interactive methodology for optimized defect characterization by quantitative pulsed phase thermography. Res Nondestruct Eval 16(4):175–193. doi: 10.1080/09349840500351846 CrossRefGoogle Scholar
  24. Ibarra-Castanedo C, Genest M, Piau J-M, Guibert S, Bendada A, Maldague XPV (2007) Active infrared thermography techniques for the non-destructive testing of materials. In: Ultrasonic and advanced methods for nondestructive testing and material characterization, Chen, CH, pp 325–348.
  25. Igel C, Hansen N, Roth S (2007) Covariance matrix adaptation for multi-objective optimization. Evol Comput 15(1):1–28. doi: 10.1162/evco.2007.15.1.1 CrossRefGoogle Scholar
  26. Isakov V (2006) Inverse problems for partial differential equations, 2nd edition, vol. 127 of applied mathematical sciences. Springer, New York. doi: 10.1007/0-387-32183-7 Google Scholar
  27. Iwasaki A, Todoroki A, Sugiya T (2003) Remote smart damage detection via internet with unsupervised statistical diagnosis. Springer, Dordrecht, pp 157–166. doi: 10.1007/978-94-017-0371-0_16 Google Scholar
  28. Jekabsons G (2011) ARESLab adaptive regression Splines toolbox for Matlab/Octave.
  29. Kim C, Wang S, Choi KK (2005) Efficient response surface modeling by using moving least-squares method and sensitivity. AIAA J 43(11):2404–2411CrossRefGoogle Scholar
  30. Lau S, Almond D, Milne J (1991) A quantitative analysis of pulsed video thermography. NDT E Int 24(4):195–202. doi: 10.1016/0963-8695(91)90267-7 CrossRefGoogle Scholar
  31. Levin R, Lieven N (1998) Dynamic finite element model updating using simulated annealing and genetic algorithms. Mech Syst Signal Process 12:1195–1201.
  32. Louaayou M, Naït-Saïd N, Louai FZ (2008) 2D finite element method study of the stimulation induction heating in synchronic thermography NDT. NDT E Int 41(8):577–581. doi: 10.1016/j.ndteint.2008.07.001 CrossRefGoogle Scholar
  33. Mabrouki F, Genest M, Shi G, Fahr A (2009) Numerical modeling for thermographic inspection of fiber metal laminates. NDT E Int 42(7):581–588. doi: 10.1016/j.ndteint.2009.02.010 CrossRefGoogle Scholar
  34. Maldague X, Marinetti S (1996) Pulse phase infrared thermography. J Appl Phys 79(5):2694. doi: 10.1063/1.362662 CrossRefGoogle Scholar
  35. Maldague X, Galmiche F, Ziadi A (2002) Advances in pulsed phase thermography. Infrared Phys Technol 1(418):1–11.
  36. Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl 151(3712):859–60. doi: 10.1126/science.151.3712.859-b MATHGoogle Scholar
  37. Marwala T (2010) Finite-element-model updating using computational intelligence techniques. Springer.
  38. MathWorks (2017) The Matlab user manualGoogle Scholar
  39. Meo M, Zumpano G (2008) Damage assessment on plate-like structures using a global–local optimization approach. Optim Eng 9(2):161–177. doi: 10.1007/s11081-007-9016-0 MathSciNetCrossRefMATHGoogle Scholar
  40. Mottershead J, Friswell M (1993) Model updating in structural dynamics: a survey. J Sound Vib 167(2):347–375. doi: 10.1006/jsvi.1993.1340 CrossRefMATHGoogle Scholar
  41. Nagle RK, Saff EB, Snider AD (2012) Fundamentals of differential equations and boundary value problems. Pearson Education, BostonMATHGoogle Scholar
  42. Nguyen XS, Sellier A, Duprat F, Pons G (2009) Adaptive response surface method based on a double weighted regression technique. Probab Eng Mech 24(2):135–143. doi: 10.1016/j.probengmech.2008.04.001 CrossRefGoogle Scholar
  43. Nocedal J, Wright SJ (1999) Numerical optimization, springer series in operations research and financial engineering. Springer, New York. doi: 10.1007/b98874 Google Scholar
  44. Offord,C.,Bajzer,Ž.(2001) A hybrid global optimization algorithm involving simplex and inductive search. In: Computational science—ICCS 2001, vol. 2074. Springer, pp 680–688. doi: 10.1007/3-540-45718-6_73
  45. Peeters J, Arroud G, Ribbens B, Dirckx J, Steenackers G (2015) Updating a finite element model to the real experimental setup by thermographic measurements and adaptive regression optimization. Mech Syst Signal Process 64–65:428–440. doi: 10.1016/j.ymssp.2015.04.010 CrossRefGoogle Scholar
  46. Peeters J, Ribbens B, Dirckx JJJ, Steenackers G (2016) Determining directional emissivity: numerical estimation and experimental validation by using infrared thermography. Infrared Phys Technol. doi: 10.1016/j.infrared.2016.06.016 Google Scholar
  47. Peeters J, Steenackers G, Ribbens B, Arroud G, Dirckx J (2014) Finite element optimization by pulsed thermography with adaptive response surfaces. In: Proceedings of the 2014 international conference on quantitative InfraRed thermography, University of Antwerp, QIRT Council, Bordeaux, p 10. doi: 10.21611/qirt.2014.039.
  48. Perera R, Ruiz A, Manzano C (2009) Performance assessment of multicriteria damage identification genetic algorithms. Comput Struct 87(1–2):120–127. doi: 10.1016/j.compstruc.2008.07.003 CrossRefGoogle Scholar
  49. Professional Thermographers Association (2014) Emissivity values for common materials.
  50. Ren W-X, Chen H-B (2010) Finite element model updating in structural dynamics by using the response surface method. Eng Struct 32(8):2455–2465. doi: 10.1016/j.engstruct.2010.04.019 CrossRefGoogle Scholar
  51. Rosencwaig A, Busse G (1980) High-resolution photoacoustic thermal-wave microscopy. Appl Phys Lett 36(9):725–727CrossRefGoogle Scholar
  52. Sfarra S, Ibarra-Castanedo C, Lambiase F, Paoletti D, Di Ilio A, Maldague X (2012) From the experimental simulation to integrated non-destructive analysis by means of optical and infrared techniques: results compared. Meas Sci Technol 23(11):115601. doi: 10.1088/0957-0233/23/11/115601 CrossRefGoogle Scholar
  53. Steenackers G, Guillaume P (2006) Finite element model updating taking into account the uncertainty on the modal parameters estimates. J Sound Vib 296(4–5):919–934. doi: 10.1016/j.jsv.2006.03.023 CrossRefGoogle Scholar
  54. Steenackers G, Presezniak F, Guillaume P (2009) Development of an adaptive response surface method for optimization of computation-intensive models. Comput Ind Eng 57(3):847–855. doi: 10.1016/j.cie.2009.02.016 CrossRefGoogle Scholar
  55. Susa M, Ibarra-Castanedo C (2007) Pulse thermography applied on a complex structure sample: comparison and analysis of numerical and experimental results. In: IV Conferencia Panamericana de END Buenos Aires, p 12.
  56. Thacker WI, Zhang J, Watson LT, Birch JB, Iyer MA, Berry MW (2010) Algorithm 905: SHEPPACK: modified shepard algorithm for interpolation of scattered multivariate data. ACM Trans Math Softw 37(3):34:1–34:20. doi: 10.1145/1824801.1824812 CrossRefMATHGoogle Scholar
  57. Thomas RL, Pouch JJ, Wong YH, Favro LD, Kuo PK, Rosencwaig A (1980) Subsurface flaw detection in metals by photoacoustic microscopya. J Appl Phys 51(2):1152–1156CrossRefGoogle Scholar
  58. Tu Z, Lu Y (2008) FE model updating using artificial boundary conditions with genetic algorithms. Comput Struct 86(7–8):714–727. doi: 10.1016/j.compstruc.2007.07.005 CrossRefGoogle Scholar
  59. Wang GG, Dong Z, Aitchison P (2001) Adaptive response surface method—a global optimization scheme for approximation-based design problems. Eng Optim 33(6):707–733. doi: 10.1080/03052150108940940 CrossRefGoogle Scholar
  60. Xenics Vision (2008) D. Uwaerts, gobi interface control document XP Gobi 384-1471Google Scholar
  61. Xenics Vision (2010) Sensor-Gobi 384-1471Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • J. Peeters
    • 1
  • E. Louarroudi
    • 1
  • B. Bogaerts
    • 1
  • S. Sels
    • 1
  • J. J. J. Dirckx
    • 2
  • G. Steenackers
    • 1
    • 3
  1. 1.Op3Mech Research Group, Faculty of Applied EngineeringUniversity of AntwerpAntwerpBelgium
  2. 2.Laboratory of Biomedical PhysicsUniversity of AntwerpAntwerpBelgium
  3. 3.Acoustics and Vibration Research GroupVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations