Optimization and Engineering

, Volume 16, Issue 1, pp 183–201 | Cite as

Commissioning rules for optimal velocity controller damping of servo axes using elimination methods

  • Ekkehard Batzies
  • Lukas Katthän
  • Volkmar Welker
  • Oliver Zirn


We present a new and algebraic approach to the optimal damping of servo axes during commissioning. The approach is based on control of root loci of the denominator of the transfer function using algebraic elimination. The results are either explicit formulas for simple systems or descriptions of the optima via roots of univariate polynomials. The power of the result is demonstrated in examples.


Commissioning rule Damping Servo axis Algebraic elimination method Gröbner basis 



We thank the referees of the paper for their suggestions and hints which helped to improve the scientific and write-up quality. This work was supported by the DFG Grant ZI 1301/1-1


  1. Aubry P, Lazard D, Moreno Maza M (1999) On the theories of triangular sets. J Symb Comput 28:105–124CrossRefMATHMathSciNetGoogle Scholar
  2. Bahr A, Beineke S (2007) Mechanical resonance damping in an industrial servo drive. In European Conference on Power Electronics and Applications, pp 1–10Google Scholar
  3. Batzies E, Schöller T, Welker V, Zirn O (2007) Optimal control of direct driven feed axes with flexible structural components. In Power Electronics and Drive Systems, pp 1127–1131 PEDS ’07Google Scholar
  4. Beck HP, Turschner D (2001) Commissioning of a state-controlled high-powered electrical drive using evolutionary algorithms. IEEE/ASME Trans Mechatron 6:149–154CrossRefGoogle Scholar
  5. Cox DA, Little JB, O’Shea D (2007) Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra. Springer, Berlin, Undergrad Texts MathGoogle Scholar
  6. Groß H, Hamann J, Wiegärtner G (2001) Electrical feed drives in automation: basics, computation, dimensioning. Publicis MCD Corporate Pub Siemens AGGoogle Scholar
  7. Henrici P (1964) Elements of numerical analysis. Hoboken, John Wiley & Sons IncMATHGoogle Scholar
  8. Higginson A, Handley S (1991) The self commissioning of high performance servo drives for precision mechanical systems. In: Proceedings. IECON ’91, 1991 International Conference on Industrial Electronics, Control and Instrumentation. pp 274–279Google Scholar
  9. Rahman QI, Schmeisser G (2002) Analytic theory of polynomials. Oxford University Press, OxfordMATHGoogle Scholar
  10. Sturmfels B (2002) Solving systems of polynomial equations. vol. 97 of CBMS Regional Conference Series in American Mathematical SocietyGoogle Scholar
  11. Wertz H, Schutte F (2000) Self-tuning speed control for servo drives with imperfect mechanical load. In Conference Record of the 2000 IEEE Industry Applications Conference 3, pp 1497–1504 IEEEGoogle Scholar
  12. Zirn O (2008) Machine tool analysis: modelling, simulation and control of machine tool manipulators. ETH Zürich, Department of Mechanical & Process Engineering, 2008. Habilitation Thesis.
  13. Zirn O, Batzies E, Weikert S, Schöller T (2006) State control of servo drives with flexible structural components. In Industry Applications Conference, 2006. 41st IAS Annual Meeting. Conference Record of the 2006 IEEE 4, pp 1760–1766 IEEEGoogle Scholar
  14. Zirn O, Fink A (2009) Master-slave state space control for large milling rotary tables. In 8th International Symposium on Advanced Electromechanical Motion Systems & Electric Drives Joint Symposium, 2009. ELECTROMOTION 2009 pp 1–6Google Scholar
  15. Zirn O, Fink A, Welker V (2009) Robuste und schwingungsarme Drehzahlregelung für elastische Servoantriebsketten. In 6. VDI-Fachtagung “Schwingungen in Antrieben 2009”, Leonberg, 21–22 Oct 2009Google Scholar
  16. Zirn O, Monat A, Schöller T (2005) Control of direct driven feed axes with flexible structural components. In Conference record IEEE Industrial Applications Society Annual Meeting, Hong Kong. IEEEGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ekkehard Batzies
    • 1
  • Lukas Katthän
    • 2
  • Volkmar Welker
    • 2
  • Oliver Zirn
    • 3
  1. 1.Fakultät für Computer & Electrical EngineeringHochschule FurtwangenFurtwangenGermany
  2. 2.Fachbereich Mathematik und InformatikPhilipps-Universität MarburgMarburgGermany
  3. 3.Fakultät für Technik, Bereich InformationstechnikHochschule PforzheimPforzheimGermany

Personalised recommendations