Advertisement

Optimization and Engineering

, Volume 16, Issue 2, pp 441–481 | Cite as

Adjoint-based surrogate optimization of oil reservoir water flooding

  • Eka Suwartadi
  • Stein Krogstad
  • Bjarne Foss
Article

Abstract

Maximizing economical asset of oil reservoirs is a simulation-based optimization involving large-scale simulation models. In this work we propose the use of reduced-order models for solving optimization problems in oil reservoir simulation using a Lagrangian barrier method for the treatment of nonlinear inequality constraints. The optimization with reduced-order models is done by employing a trust-region proper orthogonal decomposition (TRPOD) algorithm. In addition to the POD method, we also build a reduced-order model based on a discrete empirical interpolation method. In the algorithm, the first-order gradient of the objective function is computed by using the adjoint method, while the inverse of the second-order gradient is approximated using the BFGS method. The reduced-order models involve both the forward (state) and backward (adjoint) equations. Three optimization case examples in production optimization of oil reservoirs are used to study the method. They show that the TRPOD method works efficiently while simultaneously honoring the nonlinear constraints.

Keywords

Model order reduction Adjoint method Nonlinear constraints Production optimization Oil reservoirs 

Mathematics Subject Classification

MSC 90C30 MSC 49M37 MSC 49J20 

Notes

Acknowledgments

The authors gratefully acknowledge support from the Integrated Operation Centers at NTNU (www.iocenter.no). The authors would also like to thank the anonymous referees for their valuable input.

References

  1. Aarnes JE, Gimse T, Lie KA (2007) An introduction to the numerics of flow in porous media using Matlab. Springer Verlag, New YorkCrossRefGoogle Scholar
  2. Agarwal A (2010) Advanced strategies for optimal design and operation of pressure swing adsorption processes. Ph.D. thesis, Carnegie Mellon UniversityGoogle Scholar
  3. Agarwal A, Biegler LT (2011) A trust-region framework for constrained optimization using reduced order modeling. Optim Eng 14:3–35. doi: 10.1007/s11081-011-9164-0 MathSciNetCrossRefGoogle Scholar
  4. Alexandrov NM, Lewis RM, Gumbert CR, Green LL, Newman PA (2001) Approximation and model management in aerodynamic optimization with variable-fidelity models. J Aircr 38(6):1093–1101CrossRefGoogle Scholar
  5. Astrid P, Weiland S, Willcox K, Backx T (2008) Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans Autom Control 53(10):2237–2251MathSciNetCrossRefGoogle Scholar
  6. Audet C, Orban D (2006) Finding optimal algorithmic parameters using derivative-free optimization. SIAM J Optim 17:642–664MathSciNetCrossRefGoogle Scholar
  7. Aziz K, Settari A (1979) Petroleum reservoir simulation. Applied Science Publisher, LondonGoogle Scholar
  8. Barrault M, Maday Y, Nguyen NC, Patera AT (2004) An ’empirical interpolation’ method: application to efficient reduced basis discretization of partial differential equations. Comptes Rendus Mathematique 339(9):667–672MathSciNetCrossRefGoogle Scholar
  9. Burkardt J, Gunzburger M, Lee HC (2006) Centroidal voronoi tessellation-based reduced-order modeling of complex systems. SIAM J Sci Comput 28(2):459–484MathSciNetCrossRefGoogle Scholar
  10. Byrd RH, Nocedal J, Waltz RA (2006) Knitro: an integrated package for nonlinear optimization. Large-Scale Nonlinear Optim 83:35–59. doi: 10.1007/0-387-30065-1-4 MathSciNetCrossRefGoogle Scholar
  11. Cardoso MA, Durlofsky LJ (2010) Linearized reduced-order models for subsurface flow simulation. J Comput Phys 229(3):681–700MathSciNetCrossRefGoogle Scholar
  12. Cardoso MA, Durlofsky LJ (2010) Use of reduced-order modeling procedures for production optimization. SPE J 15(2):426–435CrossRefGoogle Scholar
  13. Cardoso MA, Durlofsky LJ, Sarma P (2009) Development and application of reduced-order modeling procedures for subsurface flow simulation. Int J Numer Methods Eng 77(9):1322–1350CrossRefGoogle Scholar
  14. Chaturantabut S, Sorensen DC (2010) Nonlinear model order reduction via discrete empirical interpolation. SIAM J Sci Comp 32(5):2737–2764MathSciNetCrossRefGoogle Scholar
  15. Chaturantabut S, Sorensen DC (2011) Application of POD and DEIM on dimension reduction of non-linear miscible viscous fingering in porous media. Math Comput Model Dyn Syst 17(4):337–353MathSciNetCrossRefGoogle Scholar
  16. Christie MA, Blunt MJ (2001) Tenth SPE comparative solution project: a comparative of upscaling technique. SPE Reserv Eval Eng 4:308–317CrossRefGoogle Scholar
  17. Conn AR, Gould NIM, Toint PL (1997) A globally convergent Lagrangian Barrier algorithm for optimization with general inequality constraints and simple bounds. Math Comput 66(217):216–288MathSciNetCrossRefGoogle Scholar
  18. Conn AR, Gould NIM, Toint PL (2000) Trust-region methods. SIAM, PhiladelphiaCrossRefGoogle Scholar
  19. Davis TA (2006) Direct methods for sparse linear systems. SIAM, PhiladelphiaCrossRefGoogle Scholar
  20. Fahl M (2000) Trust-region methods for flow control based on reduced order modelling. Ph.D. thesis, Trier UniversityGoogle Scholar
  21. Heijn T, Markovinovic R, Jansen JD (2004) Generation of low-order reservoir models using system-theoretical concepts. SPE J 9(2):202–218CrossRefGoogle Scholar
  22. Hinze M, Volkwein S (2005) Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control. In: Benner P, Mehrmann V, Sorensen DC (eds) Reduction of large-scale systems, lecture notes in computational science and engineering, vol 45. Springer, BerlinGoogle Scholar
  23. Krogstad S (2011) A sparse basis POD for model reduction of multiphase compressible flow. SPE-141973. In: Proceeding of the SPE 2011 reservoir simulation symposiumGoogle Scholar
  24. Krogstad S, Hauge VL, Gulbransen AF (2011) Adjoint multiscale mixed finite elements. SPE J 16(1):162–171. doi: 10.2118/119112-PA CrossRefGoogle Scholar
  25. Lie KA, Krogstad S, Ligaarden IS, Natvig LR, Nilsen HM, Skafltestad B (2011) Open-source MATLAB implementation of consistent discretisations on complex grids. Comput Geosci Online First (2011). DOI  10.1007/s10596-011-9244-4. URL http://sintef.org/Projectweb/MRST/
  26. Markovinovic R, Geurtsen EL, Heijn T, Jansen JD (2002) Generation of low-order reservoir models using POD, empirical gramians and subspace identification. In: Proc. 8th European conference on the mathematics of oil recovery (ECMOR). Freiberg, Germany, pp. E31-1-E31-10Google Scholar
  27. Markovinovic R, Geurtsen EL, Jansen JD (2002) Subspace identification of low-order reservoir models. In: Proceeding of IV international conference on computational methods in water resources, Delft, The Netherlands. pp. 281–288Google Scholar
  28. Markovinovic R, Jansen JD (2006) Accelerating iterative solution methods using reduced-order models as solution predictors. Int J Numer Methods Eng 68(5):525–541MathSciNetCrossRefGoogle Scholar
  29. Peaceman D (1983) Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability. SPE J 23(3):531–543CrossRefGoogle Scholar
  30. Robinson TD (2007) Surrogate-based optimization using multifidelity models with variable parameterization. Ph.D. thesis, Massachusetts Institute of TechnologyGoogle Scholar
  31. Rwechungura R, Suwartadi E, Dadashpour M, Kleppe J, Foss B (2010) The norne field case -a unique comparative case study. SPE 127538. In: Proceeding of SPE intelligent energy conference and exhibition, Utrecht, The NetherlandsGoogle Scholar
  32. Sachs EW (2009) Adaptive trust region POD algorithms. URL http://www.mathematik.uni-trier.de/~schu/poster_DFG.pdf
  33. Suwartadi E, Krogstad S, Foss B (2010) A Lagrangian-Barrier Function for Adjoint State Constraints Optimization of Oil Reservoir Water Flooding. In: Proceeding of IEEE conference on decision and control 2010, Atlanta, Georgia, USAGoogle Scholar
  34. Suwartadi E, Krogstad S, Foss B (2012) Nonlinear output constraints handling for production optimization of oil reservoirs. Comput Geosci 16(2):499–517CrossRefGoogle Scholar
  35. van Doren JFM, Markovinovic R, Jansen JD (2006) Reduced-order optimal control of water flooding using proper orthogonal decomposition. Comput Geosci 10(1):137–158MathSciNetCrossRefGoogle Scholar
  36. Volkwein S (2003) Model reduction using proper orthogonal decomposition. In: Lecture Note. Institute of Mathematics and Scientific Computing. University of Graz. URL http://www.uni-graz.at/imawww/volkwein/POD.pdf
  37. Wen Z, Durlofsky LJ, van Roy B (2011) Use of approximate dynamic programming for production optimization. SPE 141677. In: Proceeding of the SPE 2011 reservoir simulation symposiumGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of EngineeringCybernetics Norwegian University Science and Technology (NTNU)TrondheimNorway
  2. 2.Department of Applied MathematicsSINTEF ICTOsloNorway

Personalised recommendations