Optimization and Engineering

, Volume 13, Issue 3, pp 389–400 | Cite as

Control nonlinear diffusion macro-hybrid mixed variational problems

  • Gonzalo Alduncin


Monotone control nonlinear diffusion, primal macro-hybrid mixed variational problems, in reflexive Banach spaces, are analyzed. Composition duality principles, based on coupling compatibility conditions, establish macro-hybrid, mixed and primal equivalent variational solvabilities. Qualitative properties as existence, uniqueness and stability are determined. Macro-hybridization is performed for spatial parallel analysis and computation, in terms of non-overlapping multidomain decompositions, with primal transmission conditions dualized.


Control nonlinear diffusion problem Composition duality principle Qualitative variational analysis Macro-hybrid mixed formulation Non-overlapping domain decomposition Dual transmission problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams R (1975) Sobolev spaces. Academic Press, New York MATHGoogle Scholar
  2. Akagi G, Ôtani M (2004) Evolution inclusions governed by subdifferentials in reflexive Banach spaces. J Evol Equ 4:519–541 MathSciNetMATHCrossRefGoogle Scholar
  3. Alduncin G (2005) Composition duality methods for mixed variational inclusions. Appl Math Optim 52:311–348 MathSciNetMATHCrossRefGoogle Scholar
  4. Alduncin G (2007b) Composition duality methods for evolution mixed variational inclusions. Nonlinear Anal Hybrid Syst 1:336–363 MathSciNetMATHCrossRefGoogle Scholar
  5. Alduncin G (2007a) Macro-hybrid variational formulations of constrained boundary value problems. Numer Funct Anal Optim 28:751–774 MathSciNetMATHCrossRefGoogle Scholar
  6. Alduncin G (2010) Variational formulations of nonlinear constrained boundary value problems. Nonlinear Anal 72:2639–2644 MathSciNetMATHCrossRefGoogle Scholar
  7. Alduncin G (2011, to appear) Primal and dual evolution macro-hybrid mixed variational inclusions. Int J Math Anal 5 Google Scholar
  8. Barbu V (1976) Nonlinear semigroups and differential equations in Banach spaces. Noordhoff International Publishing, Leyden MATHCrossRefGoogle Scholar
  9. Brezis H (1987) Analyse fonctionnelle. Masson, Paris Google Scholar
  10. Coleman BD, Mizel VJ (1963) Thermodynamics and departures from Fourier’s law of heat conduction. Arch Ration Mech Anal 13:245–261 MathSciNetMATHCrossRefGoogle Scholar
  11. Ding XP, Xia FQ (2002) A new class of completely generalized quasi-variational inclusions in Banach spaces. J Comput Appl Math 147:369–383 MathSciNetMATHCrossRefGoogle Scholar
  12. Duvaut G, Lions J-L (1972) Les inéquations en méchanique et en physique. Dunod, Paris Google Scholar
  13. Lions J-L (1969) Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod/Gauthier-Villars, Paris MATHGoogle Scholar
  14. Olech C, Opial Z (1960) Sur une inégalité différentielle. Ann Pol Math VII:247–254 MathSciNetGoogle Scholar
  15. Vainberg MM (1973) Variational method and method of monotone operators in the theory of nonlinear equations. Halsted Press/Wiley, New York MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departamento de Recursos Naturales, Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMéxicoMexico

Personalised recommendations