Optimization and Engineering

, Volume 12, Issue 4, pp 681–717 | Cite as

Optimal topology design of industrial structures using an evolutionary algorithm



The paper demonstrates the application of a modified Evolutionary Structural Optimisation (ESO) algorithm for optimal design of topologies for complex structures. A new approach for adaptively controlling the material elimination and a ‘gauss point average stress’ is used as the ESO criterion in order to reduce the generation of checkerboard patterns in the resultant optimal topologies. Also, a convergence criterion is used to examine the uniformity of strength throughout a structure. The ESO algorithm is validated by comparing the ESO based solution with the result obtained using another numerical optimisation method (SIMP).

The capabilities of ESO for producing an optimal design against a specified strength constraint are illustrated using two industrial design problems, viz: a bulkhead used in an aircraft structure and a sideframe used in a railway freight wagon. It has been shown that topology optimisation using ESO can result in a considerable reduction in the weight of a structure and an optimum material utilisation by generating a uniformly stressed structure. The ESO algorithm was also applied to the shape optimisation of a local geometry of the sideframe to (locally) reduce stress levels. The paper evaluates and establishes the ESO method as a practical tool for optimum topology and subsequent shape design problems for complex industrial structures.


Structural optimisation Topology optimisation Evolutionary algorithm Finite element analysis Structural analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arutyunyan NK, Drozdov AD (1988) Optimization problems in the mechanics of growing solids. Mech Compos Mater 24(3):359–369 CrossRefGoogle Scholar
  2. AusLink-White-Paper, http://www.dotars.gov.au/auslink/white_paper/index.aspx (accessed 20 January, 2004)
  3. Azegami H (1990) Proposal of shape optimisation using a constitutive equation of growth. JSME Int J 33(1):64–71 Google Scholar
  4. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202 CrossRefGoogle Scholar
  5. Bendsøe MP (1995) Optimization of structural topology, shape, and material. Springer, Heidelberg Google Scholar
  6. Bendsøe M, Sigmund O (2003) Topology optimization—theory, methods and applications. Springer, New York Google Scholar
  7. Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413–1430 MATHCrossRefGoogle Scholar
  8. Buhl T (2002) Simultaneous topology optimization of structure and supports. Struct Multidiscipl Optim 23(5):336–346 CrossRefGoogle Scholar
  9. Buhl T, Pedersen CBW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscipl Optim 19(2):93–104 CrossRefGoogle Scholar
  10. Cerny V (1985) Thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. J Optim Theory Appl 45:41–51 MathSciNetMATHCrossRefGoogle Scholar
  11. Cheng G, Jiang Z (1992) Study on topology optimization with stress constraints. Eng Optim 20(2):129–148 CrossRefGoogle Scholar
  12. Das R, Jones R (2004a) Designing structures for optimum fracture strength. In: Proceedings of the international conference on failure analysis and maintenance technologies, Brisbane, Australia Google Scholar
  13. Das R, Jones R (2004b) NASESO user manual v 2.0. Monash University, Australia Google Scholar
  14. Das R, Jones R (2009a) Designing cutouts for optimum residual strength in plane structural elements. Int J Fract 156(2):129–153 CrossRefGoogle Scholar
  15. Das R, Jones R (2009b) Fatigue life enhancement of structures using shape optimisation. Theor Appl Fract Mech 52:165–179 CrossRefGoogle Scholar
  16. Das R, Jones R (2009c) Development of a 3D biological method for fatigue life based optimisation and its application to structural shape design. Int J Fatigue 31(2):309–321 CrossRefGoogle Scholar
  17. Das R, Jones R (2009d) Damage tolerance based design optimisation of a Fuel Flow Vent Hole in an aircraft structure. Struct Multidiscipl Optim 38(3):245–265 CrossRefGoogle Scholar
  18. Das R, Jones R, Xie YM (2005) Design of structures for optimal static strength using ESO. Eng Fail Anal 12(1):61–80 CrossRefGoogle Scholar
  19. Das R, Jones R, Peng D (2006) Optimisation of damage tolerant structures using a 3D biological algorithm. Eng Fail Anal 13(3):362–379 CrossRefGoogle Scholar
  20. Das R, Jones R, Chandra S (2007) Damage tolerance based shape design of a stringer cutout using evolutionary structural optimisation. Eng Fail Anal 14(1):118–137 CrossRefGoogle Scholar
  21. Dixon B, Molent L (2003) Ex-service F/A-18 centre barrel fatigue flaw identification test plan. DSTO, Melbourne, Australia. Report No. DSTO-TR-1426 Google Scholar
  22. Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478 MATHCrossRefGoogle Scholar
  23. Goldberg DE (1989) Genetic algorithms, in search, optimization and machine learning. Addison-Wesley, Reading MATHGoogle Scholar
  24. Haber RB, Jog CS, Bendsøe MP (1996) New approach to variable-topology shape design using a constraint on perimeter. Struct Optim 11(1–2):1–12 CrossRefGoogle Scholar
  25. Harder RF (2000) Dynamic modelling and simulation of three-piece North American freight vehicle suspensions with non-linear frictional behaviour using ADAMS/Rail. In: 5th ADAMS/Rail user’s conference, Haarlem Google Scholar
  26. Holland JH (1975) Adaptation in natural and artificial systems. MIT Press, Cambridge Google Scholar
  27. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680 MathSciNetCrossRefGoogle Scholar
  28. Li Q, Steven GP, Querin OM, Xie YM (1999a) Shape and topology design for heat conduction by evolutionary structural optimization. Int J Heat Mass Transfer 42(17):3361–3371 MATHCrossRefGoogle Scholar
  29. Li Q, Steven GP, Querin OM, Xie YM (1999b) Evolutionary topology optimisation for thermoelastic structures. ASME Trans J Mech Des 121 Google Scholar
  30. Li Q, Steven GP, Querin OM, Xie YM (2000) Structural topology design with multiple thermal criteria. Eng Comput 17(6):715–734 MATHCrossRefGoogle Scholar
  31. Li Q, Steven GP, Xie YM (2001) A simple checkerboard suppression algorithm for evolutionary structural optimization. Struct Multidiscipl Optim 22(3):230–239 CrossRefGoogle Scholar
  32. Manickarajah D, Xie YM, Steven GP (1998) Evolutionary method for optimization of plate buckling resistance. Finite Elem Anal Des 29(3–4):205–230 MATHCrossRefGoogle Scholar
  33. Manickarajah D, Xie YM, Steven GP (2000) Optimization of columns and frames against buckling. Comput Struct 75(1):45–54 CrossRefGoogle Scholar
  34. Mattheck C, Baumgartner A, Walther F (1990) Design and growth rules for biological structures and their application to engineering. Fatigue Fract Eng Mater Struct 13(5):535–550 CrossRefGoogle Scholar
  35. Navarrina F, Muiños I, Colominas I, Casteleiro M (2005) Topology optimization of structures: A minimum weight approach with stress constraints. Adv Eng Softw 36(9):599–606 MATHCrossRefGoogle Scholar
  36. Neves MM, Rodrigues H, Guedes JM (2000) Optimal design of periodic linear elastic microstructures. Comput Struct 76:421–429 CrossRefGoogle Scholar
  37. Pardalos PM, Korotkikh V (2003) Optimization and industry: new frontiers. Kluwer Academic, Dordrecht MATHCrossRefGoogle Scholar
  38. Pardalos PM, Resende MGC (2002) Handbook of Applied Optimization. Oxford University Press, London MATHGoogle Scholar
  39. Querin OM, Young V, Steven GP, Xie YM (2000) Computational efficiency and validation of bi-directional evolutionary structural optimization. Comput Methods Appl Mech Eng 189(2):559–573 MATHCrossRefGoogle Scholar
  40. Schnack E (1979) An optimization procedure for stress concentrations by the finite element technique. Int J Numer Methods Eng 14:124–151 CrossRefGoogle Scholar
  41. Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscipl Optim 21:120–127 CrossRefGoogle Scholar
  42. Svanberg K, Werme M (2006) Sequential integer programming methods for stress-constrained shape and topology optimization. In: III European conference on computational mechanics, p 498 CrossRefGoogle Scholar
  43. Xie YM, Steven GP (1993) Simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896 CrossRefGoogle Scholar
  44. Xie YM, Steven GP (1996) Evolutionary structural optimization for dynamic problems. Comput Struct 58(6):1067–1073 MATHCrossRefGoogle Scholar
  45. Xie YM, Steven GP (1997) Evolutionary structural optimization. Springer, Heidelberg MATHCrossRefGoogle Scholar
  46. Yang XY, Xie YM, Steven GP, Querin OM (1999a) Bidirectional evolutionary method for stiffness optimization. AIAA J 37(11):1483–1488 CrossRefGoogle Scholar
  47. Yang XY, Xie YM, Steven GP, Querin OM (1999b) Topology optimisation for frequencies using an evolutionary method. J Struct Eng Am Soc Civ Eng 125(12):1432–1438 Google Scholar
  48. Zhao C, Steven GP, Xie YM (1996) Evolutionary natural frequency optimization of thin plate bending vibration problems. Struct Optim 11(3–4):244–251 CrossRefGoogle Scholar
  49. Zhao C, Steven GP, Xie YM (1997) Evolutionary optimization of maximizing the difference between two natural frequencies of a vibrating structure. Struct Optim 13(2–3):148–154 CrossRefGoogle Scholar
  50. Zhou M, Rozvany GIN (2001) On the validity of ESO type methods in topology optimization. Struct Multidiscipl Optim 21(1):80–83 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centre for Advanced Composite Materials, Department of Mechanical EngineeringUniversity of AucklandAucklandNew Zealand
  2. 2.Department of Mechanical and Aerospace EngineeringMonash UniversityVictoriaAustralia
  3. 3.School of Civil and Chemical EngineeringRMIT UniversityVictoriaAustralia

Personalised recommendations