A tutorial on geometric programming

  • Stephen Boyd
  • Seung-Jean Kim
  • Lieven Vandenberghe
  • Arash Hassibi
Educational Section


A geometric program (GP) is a type of mathematical optimization problem characterized by objective and constraint functions that have a special form. Recently developed solution methods can solve even large-scale GPs extremely efficiently and reliably; at the same time a number of practical problems, particularly in circuit design, have been found to be equivalent to (or well approximated by) GPs. Putting these two together, we get effective solutions for the practical problems. The basic approach in GP modeling is to attempt to express a practical problem, such as an engineering analysis or design problem, in GP format. In the best case, this formulation is exact; when this is not possible, we settle for an approximate formulation. This tutorial paper collects together in one place the basic background material needed to do GP modeling. We start with the basic definitions and facts, and some methods used to transform problems into GP format. We show how to recognize functions and problems compatible with GP, and how to approximate functions or data in a form compatible with GP (when this is possible). We give some simple and representative examples, and also describe some common extensions of GP, along with methods for solving (or approximately solving) them.


Convex optimization Geometric programming Generalized geometric programming Interior-point methods 


  1. Abou-El-Ata M, Kotb K (1997) Multi-item EOQ inventory model with varying holding cost under two restrictions: a geometric programming approach. Prod Plan Control 8(6):608–611 Google Scholar
  2. Abou-Seido A, Nowak B, Chu C (2004) Fitted Elmore delay: a simple and accurate interconnect delay model. IEEE Trans VLSI Syst 12(7):691–696 Google Scholar
  3. Abuo-El-Ata M, Fergany H, El-Wakeel M (2003) Probabilistic multi-item inventory model with varying order cost under two restrictions: a geometric programming approach. Int J Prod Econ 83(3):223–231 Google Scholar
  4. Adeli H, Kamal O (1986) Efficient optimization of space trusses. Comput Struct 24:501–511 MATHGoogle Scholar
  5. Aggarwal V, O’Reilly U-M (2006) Design of posynomial models for MOSFETs: symbolic regression using genetic algorithms. In: Riolo R, Soule T, Worzel B (eds) Genetic programming theory and practice. Genetic and evolutionary computation, vol 5. Springer, Ann Arbor, Chap 7 Google Scholar
  6. Alejandre J, Allueva A, Gonzalez J (2004) A general alternative procedure for solving negative degree of difficulty problems in geometric programming. Comput Optim Appl 27(1):83–93 MATHMathSciNetGoogle Scholar
  7. Andersen E, Ye Y (1998) A computational study of the homogeneous algorithm for large-scale convex optimization. Comput Optim Appl 10(3):243–269 MATHMathSciNetGoogle Scholar
  8. Avriel M (1980) Advances in geometric programming. Mathematical concept and methods in science and engineering, vol 21. Plenum, New York MATHGoogle Scholar
  9. Avriel M, Dembo R, Passy U (1975) Solution of generalized geometric programs. Int J Numer Methods Eng 9(1):149–168 MATHMathSciNetGoogle Scholar
  10. Bazaraa M, Shetty C, Sherali H (1993) Non-linear programming: theory and algorithms. Wiley, New York Google Scholar
  11. Beightler C, Phillips D (1976) Applied geometric programming. Wiley, New York MATHGoogle Scholar
  12. Ben-Tal A, Teboulle M (1986) Rate distortion theory with generalized information measures via convex programming duality. IEEE Trans Inf Theory 32(5):630–641 MATHMathSciNetGoogle Scholar
  13. Ben-Tal A, Teboulle M, Charnes A (1988) The role of duality in optimization problems involving entropy functionals. J Optim Theory Appl 58(2):209–223 MATHMathSciNetGoogle Scholar
  14. Bertsekas DP (1999) Nonlinear programming, 2nd edn. Athena Scientific Google Scholar
  15. Bhardwaj S, Vrudhula S (2005) Leakage minimization of nano-scale circuits in the presence of systematic and random variations. In: Proceedings of the 42nd IEEE/ACM design automation conference (DAC), pp 535–540, 2005 Google Scholar
  16. Bhardwaj S, Cao Y, Vrudhula S (2006) Statistical leakage minimization through joint selection of gate sizes, gate lengths and threshold. In: Proceedings of the 12th conference on Asia and South Pacific design automation conference (ASP-DAC), pp 953–958, 2006 Google Scholar
  17. Boche H, Stańczak S (2004) Optimal QoS tradeoff and power control in CDMA systems. In: Proceedings of the 23rd IEEE INFOCOM, pp 477–486, 2004 Google Scholar
  18. Borah M, Owens R, Irwin M (1997) A fast algorithm for minimizing the Elmore delay to identified critical sinks. IEEE Trans Comput Aided Des Integr Circuits Syst 16(7):753–759 Google Scholar
  19. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge MATHGoogle Scholar
  20. Boyd S, Kim S-J, Patil D, Horowitz M (2005) Digital circuit optimization via geometric programming. Oper Res 53(6):899–932 MathSciNetMATHGoogle Scholar
  21. Boyd S, Kim S-J, Patil D, Horowitz M (2006) A heuristic method for statistical digital circuit sizing. In: Proceedings of the 31st SPIE international symposium on microlithography, San Jose, 2006 Google Scholar
  22. Bricker D, Kortanek K, Xui L (1997) Maximum likelihood estimates with order restrictions on probabilities and odds ratios: a geometric programming approach. J Appl Math Decis Sci 1(1):53–65 MATHGoogle Scholar
  23. Chan A, Turlea E (1978) An approximate method for structural optimisation. Comput Struct 8(3–4):357–363 MATHGoogle Scholar
  24. Chandra D, Singh V, Kar H (2004) Improved Routh-Padé approximants: a computer-aided approach. IEEE Trans Autom Control 49(2):292–296 MathSciNetGoogle Scholar
  25. Chen C-P, Wong D (1999) Greedy wire-sizing is linear time. IEEE Trans Comput Aided Des Integr Circuits Syst 18(4):398–405 MathSciNetGoogle Scholar
  26. Chen C-P, Chu C, Wong D (1999) Fast and exact simultaneous gate and wire sizing by Lagrangian relaxation. IEEE Trans Comput Aided Des Integr Circuits Syst 18(7):1014–1025 Google Scholar
  27. Chen T-Y (1992) Structural optimization using single-term posynomial geometric programming. Comput Struct 45(5–6):911–918 MATHGoogle Scholar
  28. Chen T-C, Pan S-R, Chang Y-W (2004) Timing modeling and optimization under the transmission line model. IEEE Trans Very Large Scale Integr Syst 12(1):28–41 Google Scholar
  29. Chen W, Hseih C-T, Pedram M (2000) Simultaneous gate sizing and placement. IEEE Trans Comput Aided Des Integr Circuits Syst 19(2):206–214 Google Scholar
  30. Cheng T (1991) An economic order quantity model with demand-dependent unit production cost and imperfect production processes. IIE Trans 23(1):23 Google Scholar
  31. Cheng H, Fang S-C, Lavery J (2002) Univariate cubic L 1 splines—A geometric programming approach. Math Methods Oper Res 56(2):197–229 MATHMathSciNetGoogle Scholar
  32. Cheng H, Fang S-C, Lavery J (2005a) A geometric programming framework for univariate cubic L 1 smoothing splines. Ann Oper Res 133(1–4):229–248 MATHMathSciNetGoogle Scholar
  33. Cheng H, Fang S-C, Lavery J (2005b) A geometric programming framework for univariate cubic L 1 smoothing splines. J Comput Appl Math 174(2):361–382 MATHMathSciNetGoogle Scholar
  34. Chiang M (2005a) Balancing transport and physical layers in wireless multihop networks: jointly optimal congestion control and power control. IEEE J Sel Areas Commun 23(1):104–116 Google Scholar
  35. Chiang M (2005b) Geometric programming for communication systems. Found Trends Commun Inf Theory 2(1–2):1–154 MATHGoogle Scholar
  36. Chiang M, Boyd S (2004) Geometric programming duals of channel capacity and rate distortion. IEEE Trans Inf Theory 50(2):245–258 MathSciNetGoogle Scholar
  37. Chiang M, Chan B, Boyd S (2002a) Convex optimization of output link scheduling and active queue management in QoS constrained packet sitches. In: Proceedings of the 2002 IEEE international conference on communications (ICC), pp 2126–2130, 2002 Google Scholar
  38. Chiang M, Sutivong A, Boyd S (2002b) Efficient nonlinear optimization of queuing systems. In: Proceedings of the 2002 IEEE global telecommunications conference (GLOBECOM), pp 2425–2429, 2002 Google Scholar
  39. Choi J-C, Bricker D (1995) Geometric programming with several discrete variables: algorithms employing generalized benders. Eng Optim 3:201–212 Google Scholar
  40. Choi J, Bricker D (1996a) Effectiveness of a geometric programming algorithm for optimization of machining economics models. Comp Oper Res 23(10):957–961 MATHGoogle Scholar
  41. Choi J-C, Bricker D (1996b) A heuristic procedure for rounding posynomial geometric programming solutions to discrete value. Comput Ind Eng 30(4):623–629 Google Scholar
  42. Chu C, Wong D (1999) An efficient and optimal algorithm for simultaneous buffer and wire sizing. IEEE Trans Comput Aided Des Integr Circuits Syst 18(9):1297–1304 Google Scholar
  43. Chu C, Wong D (2001a) Closed form solutions to simultaneous buffer insertion/sizing and wire sizing. ACM Trans Des Autom Electron Syst 6(3):343–371 Google Scholar
  44. Chu C, Wong D (2001b) VLSI circuit performance optimization by geometric programming. Ann Oper Res 105(1–4):37–60 MATHMathSciNetGoogle Scholar
  45. Clasen R (1963) The linear logarithmic programming problem. Rand Corp. Memo. RM-37-7-PR, June 1963 Google Scholar
  46. Clasen R (1984) The solution of the chemical equilibrium programming problem with generalized benders decomposition. Oper Res 32(1):70–79 MATHGoogle Scholar
  47. Colleran D, Portmann C, Hassibi A, Crusius C, Mohan S, Boyd S, Lee T, Hershenson M (2003) Optimization of phase-locked loop circuits via geometric programming. In: Proceedings of the 2003 IEEE custom integrated circuits conference (CICC), pp 326–328, 2003 Google Scholar
  48. Cong J, He L (1996) Optimal wire sizing for interconnects with multiple sources. ACM Trans Des Autom Electron Syst 1(4):478–511 Google Scholar
  49. Cong J, He L (1998) Theory and algorithm of local-refinement-based optimization with application to device and interconnect sizing. IEEE Trans Comput Aided Des Integr Circuits Syst 18(4):406–420 Google Scholar
  50. Cong J, Koh C-K (1994) Simultaneous driver and wire sizing for performance and power optimization. IEEE Trans Very Large Scale Integr Syst 2(4):408–423 Google Scholar
  51. Cong J, Leung K-S (1995) Optimal wiresizing under Elmore delay model. IEEE Trans Comput Aided Des Integr Circuits Syst 14(3):321–336 Google Scholar
  52. Cong J, Pan Z (2002) Wire width planning for interconnect performance optimization. IEEE Trans Comput Aided Des Integr Circuits Syst 21(3):319–329 Google Scholar
  53. Corstjens M, Doyle P (1979) Channel optimization in complex marketing systems. Manag Sci 25(10):1014–1025 MATHGoogle Scholar
  54. Coudert O, Haddad R, Manne S (1996) New algorithms for gate sizing: a comparative study. In: Proceedings of 33rd IEEE/ACM design automation conference (DAC), pp 734–739, 1996 Google Scholar
  55. Daems W, Gielen G, Sansen W (2003) Simulation-based generation of posynomial performance models for the sizing of analog integrated circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 22(5):517–534 Google Scholar
  56. Dantzig G, Johnson S, White W (1958) Shape-preserving properties of univariate cubic L 1 splines. Manag Sci 5(1):38–43 MATHMathSciNetGoogle Scholar
  57. Dawson J, Boyd S, Hershenson M, Lee T (2001) Optimal allocation of local feedback in multistage amplifiers via geometric programming. IEEE Trans Circuits Syst I Fundam Theory Appl 48(1):1–11 Google Scholar
  58. Dembo R (1982) Sensitivity analysis in geometric programming. J Optim Theory Appl 37(1):1–21 MATHMathSciNetGoogle Scholar
  59. Dhillon B, Kuo C (1991) Optimum design of composite hybrid plate girders. J Struct Eng 117(7):2088–2098 Google Scholar
  60. Dinkel J, Kochenberger M, Wong S (1978) Sensitivity analysis procedures for geometric programs: Computational aspects. ACM Trans Math Softw 4(1):1–14 MATHGoogle Scholar
  61. Duffin R (1970) Linearizing geometric programs. SIAM Rev 12(2):668–675 MathSciNetGoogle Scholar
  62. Duffin R, Peterson E, Zener C (1967) Geometric programming—theory and application. Wiley, New York MATHGoogle Scholar
  63. Dutta A, Rama D (1992) An optimization model of communications satellite planning. IEEE Trans Commun 40(9):1463–1473 Google Scholar
  64. Ecker J (1980) Geometric programming: Methods, computations and applications. SIAM Rev 22(3):338–362 MATHMathSciNetGoogle Scholar
  65. Edvall M, Hellman F (2005) User’s Guide for TOMLAP/GP. Available from http://tomlab.biz/docs/TOMLAB_GP.pdf
  66. El Barmi H, Dykstra R (1994) Restricted multinomial maximum likelihood estimation based upon Fenchel duality. Stat Probab Lett 21(2):121–130 MATHMathSciNetGoogle Scholar
  67. Federowicz A, Rajgopal J (1999) Robustness of posynomial geometric programming optima. Math Program 85(2):421–431 MathSciNetGoogle Scholar
  68. Feigin P, Passy U (1981) The geometric programming dual to the extinction probability problem in simple branching processes. Ann Probab 9(3):498–503 MATHMathSciNetGoogle Scholar
  69. Fishburn J, Dunlop A (1985) TILOS: a posynomial programming approach to transistor sizing. In: IEEE international conference on computer-aided design: ICCAD-85. Digest of technical papers, pp 326–328. IEEE Computer Society Press Google Scholar
  70. Floudas C (1999) Deterministic global optimization: theory, algorithms and applications. Kluwer Academic, Dordrecht Google Scholar
  71. Foschini G, Miljanic Z (1993) A simple distributed autonomous power control algorithm and its convergence. IEEE Trans Veh Technol 42(4):641–646 Google Scholar
  72. Fuh C-D, Hu I (2000) Asymptotically efficient strategies for a stochastic scheduling problem with order constraints. Ann Stat 28(6):1670–1695 MATHMathSciNetGoogle Scholar
  73. Gao Y, Wong D (1999) Optimal shape function for a bidirectional wire under Elmore delay model. IEEE Trans Comput Aided Des Integr Circuits Syst 18(7):994–999 Google Scholar
  74. Grant M, Boyd S, Ye Y (2005) cvx: matlab software for disciplined convex programming. Available from www.stanford.edu/~boyd/cvx/
  75. Greenberg H (1995) Mathematical programming models for environmental quality control. Oper Res 43(4):578–622 MATHGoogle Scholar
  76. Hajela P (1986) Geometric programming strategies for large-scale structural synthesis. AIAA J 24(7):1173–1178 MATHGoogle Scholar
  77. Hariri A, Abou-El-Ata M (1997) Multi-item production lot-size inventory model with varying order cost under a restriction: a geometric programming approach. Prod Plan Control 8(2):179–182 Google Scholar
  78. Hassibi A, Hershenson M (2002) Automated optimal design of switched-capacitor filters. In: Proceedings of the 2002 design, automation and test in Europe conference and exhibition (DATE), p 1111, 2002 Google Scholar
  79. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer, Berlin MATHGoogle Scholar
  80. Hershenson M (2002) Design of pipeline analog-to-digital converters via geometric programming. In: Proceedings of the 2002 IEEE/ACM international conference on computer aided design (ICCAD), pp 317–324, San Jose, 2002 Google Scholar
  81. Hershenson M (2003) Analog design space exploration: efficient description of the design space of analog circuits. In: Proceedings of the 40th design automation conference (DAC), pp 970–973, 2003 Google Scholar
  82. Hershenson M, Boyd S, Lee T (1998) GPCAD: A tool for CMOS op-amp synthesis. In: Proceedings of the 1998 IEEE/ACM international conference on computer aided design (ICCAD), pp 296–303, 1998 Google Scholar
  83. Hershenson M, Hajimiri A, Mohan S, Boyd S, Lee T (1999) Design and optimization of LC oscillators. In: Proceedings of the 2000 IEEE/ACM international conference on computer-aided design (ICCAD), pp 65–69, 1999 Google Scholar
  84. Hershenson M, Boyd S, Lee T (2001) Optimal design of a CMOS op-amp via geometric programming. IEEE Trans Comput Aided Des Integr Circuits Syst 20(1):1–21 Google Scholar
  85. Hitomi K (1996) Manufacturing systems engineering: a unified approach to manufacturing technology, production management, and industrial economics, 2nd edn. CRC Press, Boca Raton Google Scholar
  86. Horowitz M, Alon E, Patil D, Naffziger S, Kumar R, Bernstein K (2005) Scaling, power, and the future of CMOS. In: Proceedings of the 2005 IEEE international electron devices meeting (IEDM), pp 9–15, 2005 Google Scholar
  87. Hsiung K-L, Kim S-J, Boyd S (2006) Tractable approximate robust geometric programming. Manuscript. Available from www.stanford,edu/~boyd/rgp.html
  88. Hu I, Wei C (1989) Irreversible adaptive allocation rules. Ann Stat 17(2):801–823 MATHMathSciNetGoogle Scholar
  89. Ismail Y, Friedman E, Neves J (2000) Equivalent Elmore delay for RLC trees. IEEE Trans Comput Aided Des Integr Circuits Syst 19(7):83–97 Google Scholar
  90. Jabr R (2005) Applications of geometric programming to transformer design. IEEE Trans Magn 41(11):4261–4269 Google Scholar
  91. Jha N (1990) A discrete data base multiple objective optimization of milling operation through geometric programming. ASME J Eng Ind 112(4):368–374 CrossRefGoogle Scholar
  92. Jiang I, Chang Y, Jou J (2000) Crosstalk-driven interconnect optimization by simultaneous gate and wire sizing. IEEE Trans Comput Aided Des Integr Circuits Syst 19(9):999–1010 Google Scholar
  93. Joshi S, Boyd S, Dutton R (2005) Optimal doping profiles via geometric programming. IEEE Trans Electron Devices 52(12):2660–2675 Google Scholar
  94. Julian D, Chiang M, O’Neill D, Boyd S (2002) QoS and fairness constrained convex optimization of resource allocation for wireless cellular and ad hoc networks. In: Proceedings of the 21st IEEE INFOCOM, pp 477–486, 2002 Google Scholar
  95. Jung H, Klein C (2001) Optimal inventory policies under decreasing cost functions via geometric programming. Eur J Oper Res 132(3):628–642 MATHGoogle Scholar
  96. Kandukuri S, Boyd S (2002) Optimal power control in interference-limited fading wireless channels with outage-probability specifications. IEEE Trans Wirel Commun 1(1):46–55 Google Scholar
  97. Karlof J, Chang Y (1997) Optimal permutation codes for the Gaussian channel. IEEE Trans Inform Theory 43(1):356–358 MATHMathSciNetGoogle Scholar
  98. Kasamsetty K, Ketkar M, Sapatnekar S (2000) A new class of convex functions for delay modeling and its application to the transistor sizing problem. IEEE Trans Comput Aided Des Integr Circuits Syst 19(7):779–788 Google Scholar
  99. Kay R, Pileggi L (1998) EWA: Efficient wiring-sizing algorithm for signal nets and clock nets. IEEE Trans Comput Aided Des Integr Circuits Syst 17(1):40–49 Google Scholar
  100. Kiely T, Gielen G (2004) Performance modeling of analog integrated circuits using least-squares support vector machines. In: Proceedings of the 2004 design, automation and test in Europe conference and exhibition (DATE), pp 16–20, 2004 Google Scholar
  101. Kim J, Lee J, Vandenberghe L, Yang K (2004) Techniques for improving the accuracy of geometric-programming based analog circuit design optimization. In: Proceedings of the 2004 IEEE/ACM international conference on computer-aided design (ICCAD), pp 863–870, 2004 Google Scholar
  102. Kim S-J, Boyd S, Yun S, Patil D, Horowitz M (2007) A heuristic for optimizing stochastic activity networks with applications to statistical digital circuit sizing (to appear in Optim Eng). Available from www.stanford.edu/~boyd/heur_san_opt.html
  103. Klafszky E, Mayer J, Terlaky T (1992) A geometric programming approach to the channel capacity problem. Eng Optim 19:115–130 Google Scholar
  104. Kortanek K, Xu X, Ye Y (1996) An infeasible interior-point algorithm for solving primal and dual geometric programs. Math Program 76(1):155–181 MathSciNetGoogle Scholar
  105. Krishnamurthy R, Carley L (1997) Exploring the design space of mixed swing quadrail for low-power digital circuits. IEEE Trans Very Large Scale Integr Syst 5(4):389–400 Google Scholar
  106. Kyparsis J (1988) Sensitivity analysis in posynomial geometric programming. J Optim Theory Appl 57(1):85–121 MathSciNetGoogle Scholar
  107. Kyparsis J (1990) Sensitivity analysis in geometric programming: theory and computations. Ann Oper Res 27(1):39–64 MathSciNetGoogle Scholar
  108. Lawler E, Wood D (1966) Branch-and-bound methods: a survey. Oper Res 14(4):699–719 MATHMathSciNetGoogle Scholar
  109. Lee J, Hatcher G, Vandenbergh L, Yang K (2003) Evaluation of fully-integrated switching regulators for CMOS process technologies. In: Proceedings of the 2003 international symposium on system-on-chip, pp 155–158, 2003 Google Scholar
  110. Lee W, Kim D (1993) Optimal and heuristic decision strategies for integrated production and marketing planning. Decis Sci 24(6):1203–1213 Google Scholar
  111. Lee Y-M, Chen C, Wong D (2002) Optimal wire-sizing function under the Elmore delay model with bounded wire sizes. IEEE Trans Circuits Syst I Fundam Theory Appl 49(11):1671–1677 MathSciNetGoogle Scholar
  112. Li X, Gopalakrishnan P, Xu Y, Pileggi T (2004) Robust analog/RF circuit design with projection-based posynomial modeling. In: Proceedings of the IEEE/ACM international conference on computer aided design (ICCAD), pp 855–862, 2004 Google Scholar
  113. Lin T, Pileggi L (2001) RC(L) interconnect sizing with second order considerations via posynomial programming. In: Proceedings of the 2001 ACM/SIGDA international symposium on physical design (ISPD), pp 16–21, 2001 Google Scholar
  114. Löfberg J (2003) YALMIP. Yet another LMI parser. Version 2.4. Available from http://control.ee.ethz.ch/~joloef/yalmip.php
  115. Lou J, Chen W, Pedram M (1999) Concurrent logic restructuring and placement for timing closure. In: Proceedings of the 1999 IEEE/ACM international conference on computer-aided design (ICCAD), pp 31–35, 1999 Google Scholar
  116. Luenberger D (1984) Linear and nonlinear programming, 2nd edn. Addison–Wesley, Reading MATHGoogle Scholar
  117. Magnani A, Boyd S (2006) Convex piecewise-linear fitting (submitted to Optim Eng). Available from www.stanford.edu/~boyd/cvx_pwl_fit.html
  118. Mandal P, Visvanathan V (2001) CMOS op-amp sizing using a geometric programming formulation. IEEE Trans Comput Aided Des Integr Circuits Syst 20(1):22–38 Google Scholar
  119. Maranas C, Floudas C (1997) Global optimization in generalized geometric programming. Comput Chem Eng 21(4):351–369 MathSciNetGoogle Scholar
  120. Marković D, Stojanović V, Nikolić B, Horowitz M, Brodersen R (2004) Methods for true energy-performance optimization. IEEE J Solid State Circuits 39(8):1282–1293 Google Scholar
  121. Matson M, Glasser L (1986) Macromodeling and optimization of digital MOS VLSI circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 5(4):659–678 Google Scholar
  122. Mazumdar M, Jefferson T (1983) Maximum likelihood estimates for multinomial probabilities via geometric programming. Biometrika 70(1):257–261 MATHMathSciNetGoogle Scholar
  123. Moh T-S, Chang T-S, Hakimi S (1996) Globally optimal floorplanning for a layout problem. IEEE Trans Circuits Syst I Fundam Theory Appl 43(29):713–720 MathSciNetGoogle Scholar
  124. Mohan S, Hershenson M, Boyd S, Lee T (1999) Simple accurate expressions for planar spiral inductances. IEEE J Solid State Circuit 34(10):1419–1424 Google Scholar
  125. Mohan S, Hershenson M, Boyd S, Lee T (2000) Bandwidth extension in CMOS with optimized on-chip inductors. IEEE J Solid State Circuits 35(3):346–355 Google Scholar
  126. Moore R (1991) Global optimization to prescribed accuracy. Comput Math Appl 21(6-7):25–39 MATHGoogle Scholar
  127. MOSEK ApS (2002) The MOSEK optimization tools version 2.5. User’s manual and reference. Available from www.mosek.com
  128. Muqattash A, Krunz M, Shu T (2006) Performance enhancement of adaptive orthogonal modulation in wireless CDMA systems. IEEE J Sel Areas Commun 23(3):565–578 Google Scholar
  129. Mutapcic A, Koh K, Kim S-J, Boyd S (2006) ggplab: a matlab toolbox for geometric programming. Available from www.stanford.edu/~boyd/ggplab/
  130. Nesterov Y, Nemirovsky A (1994) Interior-point polynomial methods in convex programming. Studies in applied mathematics, vol 13. SIAM, Philadelphia Google Scholar
  131. Nijhamp P (1972) Planning of industrial complexes by means of geometric programming. Rotterdam Univ. Press, Rotterdam Google Scholar
  132. Nocedal J, Wright S (1999) Numerical optimization, Springer series in operations research. Springer, New York MATHGoogle Scholar
  133. Palomar D, Cioffi J, Lagunas M (2003) Joint Tx-Rx beamforming design for multicarrier MIMO channels: a unified framework for convex optimization. IEEE Trans Signal Process 51(9):2381–2401 Google Scholar
  134. Papalambros P, Wilde D (1988) Principles of optimal design. Cambridge University Press, Cambridge MATHGoogle Scholar
  135. Patil D, Yun Y, Kim S-J, Boyd S, Horowitz M (2005) A new method for robust design of digital circuits. In: Proceedings of the 6th international symposium on quality electronic design (ISQED), pp 676–681, 2005 Google Scholar
  136. Pattanaik M, Banerjee S, Bahinipati B (2003) GP based transistor sizing for optimal design of nanoscale CMOS inverter. In: Proceedings of the 3rd IEEE conference on nanotechnology, pp 524–527, 2003 Google Scholar
  137. Peterson E (1976) Geometric programming. SIAM Rev 18(1):1–51 MATHMathSciNetGoogle Scholar
  138. Peterson E (2001) The origins of geometric programming. Ann Oper Res 105(1-4):15–19 MATHMathSciNetGoogle Scholar
  139. Qin Z, Cheng C-K (2003) Realizable parasitic reduction using generalized Y-Δ transformation. In: Proceedings of the 40th IEEE/ACM design automation conference (DAC), pp, 220–225, 2003 Google Scholar
  140. Rajasekera J, Yamada M (2001) Estimating the firm value distribution function by entropy optimization and geometric programming. Ann Oper Res 105(1–4):61–75 MATHMathSciNetGoogle Scholar
  141. Rajpogal J, Bricker D (1990) Posynomial geometric programming as a special case of semi-infinite linear programming. J Optim Theory Appl 66(3):444–475 Google Scholar
  142. Rao S (1996) Engineering optimization: theory and practice, 3rd edn. Wiley–Interscience, New York Google Scholar
  143. Rijckaert M, Walraven E (1985) Geometric programming: estimation of Lagrange multipliers. Oper Res 33(1):85–93 MATHMathSciNetGoogle Scholar
  144. Rosenberg E (1989) Optimization module sizing in VLSI floorplanning by nonlinear programming. ZOR-Methods Model Oper Res 33(2):131–143 MATHGoogle Scholar
  145. Rubenstein J, Penfield P, Horowitz M (1983) Signal delay in RC tree networks. IEEE Trans Comput Aided Des Integr Circuits Syst 2(3):202–211 Google Scholar
  146. Sakurai T (1988) Approximation of wiring delay in MOSFET LSI. IEEE J Solid State Circuits 18(4):418–426 Google Scholar
  147. Salomone H, Iribarren O (1993) Posynomial modeling of batch plants: a procedure to include process decision variables. Comput Chem Eng 16(3):173–184 Google Scholar
  148. Salomone H, Montagna J, Iribarren O (1994) Dynamic simulations in the design of batch processes. Comput Chem Eng 18(3):191–204 Google Scholar
  149. Sancheti P, Sapatnekar S (1996) Optimal design of macrocells for low power and high speed. IEEE Trans Comput Aided Des Integr Circuits Syst 15(9):1160–1166 Google Scholar
  150. Sapatnekar S (1996) Wire sizing as a convex optimization problem: exploring the area-delay tradeoff. IEEE Trans Comput Aided Des Integr Circuits Syst 15(8):1001–1011 Google Scholar
  151. Sapatnekar S (2004) Timing. Kluwer Academic, Dordrecht MATHGoogle Scholar
  152. Sapatnekar S, Rao V, Vaidya P, Kang S (1993) An exact solution to the transistor sizing problem for CMOS circuits using convex optimization. IEEE Trans Comput Aided Des Integr Circuits Syst 12(11):1621–1634 Google Scholar
  153. Sathyamurthy H, Sapatnekar S, Fishburn J (1998) Speeding up pipelined circuits through a combination of gate sizing and clock skew optimization. IEEE Trans Comput Aided Des Integr Circuits Syst 17(2):173–182 Google Scholar
  154. Satish N, Ravindran K, Moskewicz M, Chinnery D, Keutzer K (2005) Evaluating the effectiveness of statistical gate sizing for power optimization. Technical report ERL memorandum M05/28, University of California at Berkeley, August 2005 Google Scholar
  155. Scott C, Jefferson T, Jorjani S (2004) Duals for classical inventory models via generalized geometric programming. J Appl Math Decis Sci 8(3):191–200 MATHMathSciNetGoogle Scholar
  156. Sherali H (1998) Global optimization of nonconvex polynomial programming problems having rational exponents. J Global Optim 12(3):267–283 MATHMathSciNetGoogle Scholar
  157. Sherwani N (1999) Algorithms for VLSI design automation, 3rd edn. Kluwer Academic, Dordrecht MATHGoogle Scholar
  158. Shyu J, Sangiovanni-Vincetelli A, Fishburn J, Dunlop A (1988) Optimization-based transistor sizing. IIEEE J Solid State Circuits 23(2):400–409 Google Scholar
  159. Singh J, Nookala V, Luo Z-Q, Sapatnekar S (2005) Robust gate sizing by geometric programming. In: Proceedings of the 42nd IEEE/ACM design automation conference (DAC), pp 315–320, 2005 Google Scholar
  160. Smeers Y, Tyteca D (1984) A geometric programming model for the optimal design of wastewater treatment plants. Oper Res 32(2):314–342 MATHGoogle Scholar
  161. Sonmez A, Baykasoglu A, Dereli T, Flz I (1999) Dynamic optimization of multipass milling operations via geometric programming. Int J Mach Tools Manuf 39(2):297–320 Google Scholar
  162. Stark R, Machida M (1993) Chance design costs-A distributional limit. In: Proceedings of the 2nd international symposium on uncertainty modeling and analysis, pp 269–270, 1993 Google Scholar
  163. Sutherland I, Sproull B, Harris D (1999) Logical effort: designing fast CMOS circuits. Morgan Kaufmann, San Francisco Google Scholar
  164. Swahn B, Hassoun S (2006) Gate sizing: FinFETs vs 32nm bulk MOSFETs. In: Proceedings of the 43rd IEEE/ACM design automation conference (DAC), pp 528–531, 2006 Google Scholar
  165. Trivedi K, Sigmon T (1981) Optimal design of linear storage hierarchies. J ACM 28(2):270–288 MATHMathSciNetGoogle Scholar
  166. Tsai J-F, Li H-L, Hu N-Z (2002) Global optimization for signomial discrete programming problems in engineering design. Eng Optim 34(6):613–622 Google Scholar
  167. Vanderhaegen J, Brodersen R (2004) Automated design of operational transconductance amplifiers using reversed geometric programming. In: Proceedings of the 41st IEEE/ACM design automation conference (DAC), pp 133–138, 2004 Google Scholar
  168. Vanderplaats G (1984) Numerical optimization techniques for engineering design. McGraw–Hill, New York MATHGoogle Scholar
  169. Vardi Y (1985) Empirical distributions in selection bias models. Ann Stat 13(1):178–203 MATHMathSciNetGoogle Scholar
  170. Wall T, Greening D, Woolsey R (1986) Solving complex chemical equilibria using a geometric-programming based technique. Oper Res 34(3):345–355 MATHCrossRefGoogle Scholar
  171. Wilde D (1978) Globally optimal design. Wiley, New York Google Scholar
  172. Wilde D, Beightler C (1967) Foundations of optimization. Prentice Hall, Englewood Cliffs MATHGoogle Scholar
  173. Wong D (1981) Maximum likelihood, entropy maximization, and the geometric programming approaches to the calibration of trip distribution models. Transp Res Part B Methodol 15(5):329–343 Google Scholar
  174. Xu Y, Pileggi L, Boyd S (2004) ORACLE: optimization with recourse of analog circuits including layout extraction. In: Proceedings of the 41st IEEE/ACM design automation conference (DAC), pp 151–154, 2004 Google Scholar
  175. Yang H-H, Bricker D (1997) Investigation of path-following algorithms for signomial geometric programming problems. Eur J Oper Res 103(1):230–241 MATHGoogle Scholar
  176. Yazarel H, Pappas G (2004) Geometric programming relaxations for linear system reachability. In: Proceedings of the 2004 American control conference (ACC), pp 553–559, 2004 Google Scholar
  177. Young F, Chu C, Luk W, Wong Y (2001) Handling soft modules in general nonslicing floorplan using Lagrangian relaxation. IEEE Trans Comput Aided Des Integr Circuits Syst 20(5):687–629 Google Scholar
  178. Yun K, Xi C (1997) Second-order method of generalized geometric programming for spatial frame optimization. Comput Methods Appl Mech Eng 141(1-2):117–123 Google Scholar
  179. Zener C (1971) Eng design by geometric programming. Wiley, New York Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Stephen Boyd
    • 1
  • Seung-Jean Kim
    • 1
  • Lieven Vandenberghe
    • 2
  • Arash Hassibi
    • 3
  1. 1.Information Systems Laboratory, Department of Electrical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of Electrical EngineeringUniversity of CaliforniaLos AngelesUSA
  3. 3.Clear Shape Technologies, Inc.SunnyvaleUSA

Personalised recommendations