Advertisement

Open Systems and Information Dynamics

, Volume 14, Issue 4, pp 459–477 | Cite as

Master Fields, Drift and Dispersion in the Stochastic Limit of Quantum Theory

  • L. Accardi
  • F. G. Cubillo
Article
  • 16 Downloads

Abstract

This work is a detailed study of the convergence of the rescaled creation and annihilation densities, which lead to the master fields, and the form of the drift in the stochastic limit of quantum theory. The approach, based on the distributional theory of Fourier transforms, dispenses with the “analytical condition” and other restrictions usually considered and also establishes the dependence of the stochastic golden rules upon the dispersion function of the quantum field.

Keywords

Quantum Theory Inverse Fourier Transform Drift Term Dispersion Function Fourier Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Accardi L., Lu Y.G., Volovich I. (2002) Quantum Theory and Its Stochastic Limit. Springer-Verlag, BerlinMATHGoogle Scholar
  2. 2.
    L. Accard and S.V. Kozyrev, Quantum Interacting Particle Systems, in: Quantum Interacting Particle Systems, L. Accardi and F. Fagnola, eds., World Scientific, Singapore, 2002, pp. 1–193.Google Scholar
  3. 3.
    Gelfand I.M., Shilov G.E. (1962) Les Distributions. Dunod, ParisGoogle Scholar
  4. 4.
    Schwartz L. (1966) Méthodes Mathématiques pour les Sciences Physiques. Hermann, ParisGoogle Scholar
  5. 5.
    Titchmarsh E.C. (1948) Introduction to the Theory of Fourier Integrals. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Centro Vito VolterraUniversità degli Studi di Roma “Tor Vergata”RomeItaly
  2. 2.Departamento de Análisis MatemáticoUniversidad de ValladolidValladolidSpain

Personalised recommendations