Advertisement

Open Systems and Information Dynamics

, Volume 14, Issue 1, pp 53–61 | Cite as

Quantum Erasure of Decoherence

  • Francesco Buscemi
  • Giulio Chiribella
  • Giacomo Mauro D’Ariano
Article
  • 13 Downloads

Abstract

We consider the classical algebra of observables that are diagonal in a given orthonormal basis, and define a complete decoherence process as a completely positive map that asymptotically converts any quantum observable into a diagonal one, while preserving the elements of the classical algebra. For quantum systems in dimension two and three any decoherence process can be undone by collecting classical information from the environment and using such an information to restore the initial system state. As a relevant example, we illustrate the quantum eraser of Scully et al. [Nature 351, 111 (1991)] as an example of environment-assisted correction, and present the generalization of the eraser setup for d-dimensional systems.

Keywords

Classical Information Classical Algebra Decoherence Process Initial System State Maximal Abelian Subalgebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    K. Kraus, States, Effects, and Operations: Fundamental Notions in Quantum Theory, Lect. Notes Phys. 190, Springer-Verlag, Berlin, 1983.Google Scholar
  2. [2]
    M. Gregoratti and R. F Werner, J. Mod. Opt. 50, 915 (2003).MATHCrossRefADSMathSciNetGoogle Scholar
  3. [3]
    P. Hayden and C. King, Quantum Inform. Comput. 5, 156 (2005); J.A. Smolin, F. Verstraete, and A. Winter, Phys. Rev. A 72, 052317 (2005); A. Winter, quant-ph/0507045.MathSciNetGoogle Scholar
  4. [4]
    M. Horodecki, J. Oppenheim, and A. Winter, Nature 436, 673 (2005); M. Horodecki, J. Oppenheim, and A. Winter, quant-ph/0512247.CrossRefADSGoogle Scholar
  5. [5]
    W.H. Zurek, Phys. Today 44, 36 (1991); W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003); M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2004).Google Scholar
  6. [6]
    P. Shor, Phys. Rev. A 52, 2493 (1995); A.M. Steane, Phys. Rev. Lett. 77, 793 (1996); P. Zanardi and M. Rasetti, Phys. Rev. Lett. 79, 3306 (1998); D. A. Lidar et al., Phys. Rev. Lett. 81, 2594 (1998); E. Knill et al., Phys. Rev. Lett. 84, 2525 (2000); A.Yu. Kitaev, Annals Phys. 303, 2 (2003); J. Preskill, in: Introduction to Quantum Computation, H.-K. Lo, S. Popescu, and T. Spiller. eds., World Scientic, Singapore, 1998.CrossRefADSGoogle Scholar
  7. [7]
    M.O. Scully and K. Drühl, Phys. Rev. A 25, 2208 (1982); M.O. Scully, B.-G. Englert, and H. Walther, Nature 351, 111 (1991); S. Dürr, T. Nonn, and G. Rempe, Nature 395, 33 (1998).ADSGoogle Scholar
  8. [8]
    F. Buscemi, G. Chiribella, and G. M. D’Ariano, Phys. Rev. Lett. 95, 090501 (2005).CrossRefADSGoogle Scholar
  9. [9]
    M.-D. Choi, Lin. Alg. Appl. 10, 285 (1975).MATHCrossRefGoogle Scholar
  10. [10]
    A. Jamiołkowski, Rep. Math. Phys. 3, 275 (1972).CrossRefGoogle Scholar
  11. [11]
    C.-K. Li and B.-S. Tam, SIAM J. Matrix Anal. Appl. 15, 903 (1994).MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    W. F. Stinespring, Proc. Am. Math. Soc. 6, 211 (1955).MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    M. Ozawa, J. Math. Phys. 25, 79 (1984).CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    B. Schumacher, Phys. Rev. A 54, 2614 (1996).CrossRefADSGoogle Scholar
  15. [15]
    F. Buscemi, Phys. Lett. A 360, 256 (2006).CrossRefADSGoogle Scholar
  16. [16]
    M. O. Scully, B.-G. Englert, and H. Walther, Nature 351, 111 (1991).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Francesco Buscemi
    • 1
  • Giulio Chiribella
    • 2
  • Giacomo Mauro D’Ariano
    • 2
  1. 1.Bunkyo-kuJapan
  2. 2.Dip. di Fisica “A. Volta”PaviaItaly

Personalised recommendations