Open Systems & Information Dynamics

, Volume 13, Issue 4, pp 373–382 | Cite as

Quantum Computation of Universal Link Invariants

  • Silvano Garnerone
  • Annalisa Marzuoli
  • Mario Rasetti


In the framework of the spin-network simulator based on the SUq(2) tensor algebra, we implement families of finite state quantum automata capable of accepting the language generated by the braid group, and whose transition amplitudes are coloured Jones polynomials. The automaton calculation of the polynomial of a link L on n strands at any fixed root of unity q is bounded from above by a linear function of the number of crossings of the link, on the one hand, and polynomially bounded in terms of the braid index n, on the other.


Quantum Computation Transition Rule Braid Group Quantum Algorithm Topological Quantum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Aharonov, V. Jones and Z. Landau, quant-ph/0511096 (2005).Google Scholar
  2. [2]
    J. Yard, P. Wocjan, quant-ph/0603069 (2006).Google Scholar
  3. [3]
    V. F.R. Jones, Bull. Amer. Math. Soc. 12, 103 (1985).MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    E. Witten, Commun. Math. Phys. 121, 351 (1989).MATHMathSciNetCrossRefADSGoogle Scholar
  5. [5]
    F. Jaeger, D. L. Vertigan and D. J.A. Welsh, Math. Proc. Cambridge Phil. Soc. 108, 35 (1990).MATHMathSciNetCrossRefADSGoogle Scholar
  6. [6]
    M.H. Freedman, A. Kitaev, M. Larsen, and Z. Wang, Bull. Amer. Math. Soc. 40, 31 (2002).MathSciNetCrossRefGoogle Scholar
  7. [7]
    A. Marzuoli and M. Rasetti, Phys. Lett. A 306, 79 (2002).MATHMathSciNetCrossRefADSGoogle Scholar
  8. [8]
    S. Garnerone, A. Marzuoli and M. Rasetti, quant-ph/0601169 (2006).Google Scholar
  9. [9]
    L.C. Biedenharn and J.D. Louck, The Racah-Wigner Algebra in Quantum Theory (Topic 12. Coupling of N Angular Momenta: Recoupling Theory), Encyclopedia of Mathematics and its Applications, Vol 9, G-C. Rota, ed., Addison-Wesley Publ. Co.,Reading MA, 1981.Google Scholar
  10. [10]
    R. K. Kaul, Commun. Math. Phys. 162, 289 (1994).MATHMathSciNetCrossRefADSGoogle Scholar
  11. [11]
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.MATHGoogle Scholar
  12. [12]
    C. Moore and J.P. Crutchfield, Theor. Comput. Sci. 37, 275 (2000).MathSciNetCrossRefGoogle Scholar
  13. [13]
    E. Guadagnini, The Link Invariants of the Chern-Simons Field theory, de Gruyter, Berlin, 1993.MATHGoogle Scholar
  14. [14]
    C. Gomez, M. Ruiz-Altaba and G. Sierra, Quantum Groups in Two-Dimensional Physics, Cambridge University Press, Cambridge, 1996.MATHGoogle Scholar
  15. [15]
    A. N. Kirillov and N. Y. Reshetikhin, Representations of the algebra Uq(sl2), q-orthogonal polynomials and invariants of links, in: Infinite dimensional Lie algebras and groups, V.G. Kac, ed., Adv. Ser. in Math. Phys. 7, World Scientific, Singapore, 1988.Google Scholar
  16. [16]
    A. Marzuoli and M. Rasetti, Ann. Phys. 318, 345 (2005).MATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Silvano Garnerone
    • 1
  • Annalisa Marzuoli
    • 2
  • Mario Rasetti
    • 3
  1. 1.Dipartimento di Fisica, Politecnico di TorinoTorinoItaly
  2. 2.Dipartimento di Fisica Nucleare e TeoricaUniversità di Pavia and Sezione INFN PaviaPaviaItaly
  3. 3.Dipartimento di Fisica, Politecnico di TorinoTorinoItaly

Personalised recommendations