Open Systems & Information Dynamics

, Volume 13, Issue 3, pp 323–332 | Cite as

Low-Frequency Noise Characterization in Charge-Based Coherent Nanodevices

  • G. Falci
  • A. Mastellone
  • A. D’Arrigo
  • E. Paladino


Low-frequency noise has been recognized as the main mechanism of decoherence in present-day solid state coherent nanodevices. Often low-frequency noise has a 1/f spectrum, thus the responsible degrees of freedom are almost static during the coherent time evolution of the device. Their effect is to reduce the amplitude of the measured signal by an effect analogous to inhomogeneous broadening in NMR. Here we present a way to characterize effects of adiabatic noise exploiting the tunability of nanodevices. The results apply in principle to many implementations of quantum bits, and are particularly suited for solid state devices. The accurate characterization of the physics of the noise sources represents the first step toward the design specific strategies to eliminate their effects.


Noise Source Quantum Noise Spontaneous Decay Exact Diagonalization Solid State Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Y. Nakamura, Yu. A. Pashkin and J. S. Tsai, Nature (London) 398, 786 (1999).CrossRefADSGoogle Scholar
  2. [2]
    D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve and M. H. Devoret, Science 296, 886 (2002).CrossRefADSGoogle Scholar
  3. [3]
    Y. Yu, S. Han, X. Chu, S. Chu and Z. Wang, Science 296, 889 (2002); J.M. Martinis, S. Nam, J. Aumentado and C. Urbina, Phys. Rev. Lett. 89, 117901 (2002); I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans and J. E. Mooij, Science 299, 1869 (2003); T. Duty, D. Gunnarsson, K. Bladh and P. Delsing, Phys. Rev. B 69, 140503 (R) (2004); O. Astafiev, Yu.A. Pashkin, T. Yamamoto, Y. Nakamura and J. S. Tsai, Phys. Rev. B 69, 180507 (R.) (2004).Google Scholar
  4. [4]
    T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong and Y. Hirayama, Phys. Rev. Lett. 91, 226804 (2003); J. Gorman, D. G. Hasko and D. A. Williams, Phys. Rev. Lett. 95, 090502 (2005).CrossRefADSGoogle Scholar
  5. [5]
    T. Yamamoto, Yu. A. Pashkin, O. Astafiev, Y. Nakamura and J. S. Tsai, Nature (London) 425, 941 (2003); E. Collin, G. Ithier, A. Aassime, P. Joyez, D. Vion and D. Esteve, Phys. Rev. Lett. 93, 157005 (2004).CrossRefADSGoogle Scholar
  6. [6]
    G. Ithier, E. Collin, P. Joyez, P. J. Meeson, D. Vion, D. Esteve, F. Chiarello, A. Shnirman, Y. Makhlin, J. Schriefl and G. Shön, Phys. Rev. B 72, 134519 (2005).CrossRefADSGoogle Scholar
  7. [7]
    Y. Makhlin, G. Shön and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).CrossRefADSGoogle Scholar
  8. [8]
    G. Falci, E. Paladino and R. Fazio, Decoherence in Josephson qubits, in: Quantum Phenomena of Mesoscopic Systems, V. Tognetti and B. Altshuler, eds., IOS Press, Amsterdam, 2003.Google Scholar
  9. [9]
    G. Falci, A. D'Arrigo, A. Mastellone and E. Paladino, Phys. Rev. Lett. 94, 167002 (2005).CrossRefADSGoogle Scholar
  10. [10]
    E. Paladino, L. Faoro, G. Falci and R. Fazio, Phys. Rev. Lett. 88, 228304 (2002).CrossRefADSGoogle Scholar
  11. [11]
    E. Paladino, L. Faoro and G. Falci, Adv. Solid State Phys. 43, 747 (2003).Google Scholar
  12. [12]
    M. Galperin, B. L. Altshuler, J. Bergli and D.V. Shantsev, Phys. Rev. Lett. 96, 097009 (2006).CrossRefADSGoogle Scholar
  13. [13]
    M. B. Weissmann, Rev. Mod. Phys. 60, 537 (1988).CrossRefADSGoogle Scholar
  14. [14]
    A. B. Zorin, F.-J. Ahlers, J. Niemeyer, T. Weimann, H. Wolf, V. A. Krupenin and S. V. Lotkhov, Phys. Rev. B 53, 13682 (1996).CrossRefADSGoogle Scholar
  15. [15]
    C. P. Slichter, Principles of Magnetic Resonance Mechanics, Springer-Verlag, Berlin, 1996.Google Scholar
  16. [16]
    C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg, Atom-Photon Interactions, Wiley-Interscience, New York, 1993.Google Scholar
  17. [17]
    G. Falci et al. in preparation.Google Scholar
  18. [18]
    G. M. Palma, K. A. Suominen and A. K. Ekert Proc. Roy. Soc. London A 452, (567) 1996.Google Scholar
  19. [19]
    Y. Makhlin and A. Shnirman, Phys. Rev. Lett. 92, 178301 (2004).CrossRefADSGoogle Scholar
  20. [20]
    T. Duty, G. Johansson, K. Bladh, D. Gunnarsson, C. Wilson and P. Delsing, cond-mat/0503531.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • G. Falci
    • 1
    • 2
  • A. Mastellone
    • 1
    • 2
  • A. D’Arrigo
    • 1
    • 2
  • E. Paladino
    • 1
    • 2
  1. 1.MATIS CNR-INFMCataniaItaly
  2. 2.Dipartimento di Metodologie Fisiche e Chimiche (DMFCI)Universitá di CataniaCataniaItaly

Personalised recommendations