Open Systems & Information Dynamics

, Volume 12, Issue 1, pp 93–106 | Cite as

On Concurrence and Entanglement of Rank Two Channels



Concurrence and further entanglement quanti.ers can be computed explicitly for channels of rank two if representable by just two Kraus operators. Almost all details are available for the subclass of rank two 1-qubit channels. There is a simple geometric picture beyond, explaining nicely the role of anti-linearity.


Statistical Physic Mechanical Engineer System Theory Kraus Operator Geometric Picture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Hill and W. Wootters, Phys. Rev. Lett. 78, 5022 (1997).CrossRefGoogle Scholar
  2. [2]
    W. Wootters, Phys. Rev. Lett. 80, 2245 (1997).CrossRefGoogle Scholar
  3. [3]
    A. Fujiwara and P. Algoet, Phys. Rev. A 59, 3290 (1998).Google Scholar
  4. [4]
    C. Bennett, D. DiVincenzo, J. Smolin, and W. Wootters, Phys. Rev. A 54, 3824 (1996).Google Scholar
  5. [5]
    W.K. Wootters, Quantum Inf. and Comp. 1, 27 (2002).Google Scholar
  6. [6]
    A. Uhlmann, Phys. Rev. A 62, 032307 (2000).Google Scholar
  7. [7]
    M.B. Ruskai, S. Szarek, and E. Werner, Lin. Alg. Appl. 347, 159 (2002).CrossRefGoogle Scholar
  8. [8]
    F. Verstraete and H. Verschelde, On one-qubit channels, quant-ph/0202124.Google Scholar
  9. [9]
    V. Gorini and E. C. G. Sudarshan, Commun. Math. Phys. 46, 43 (1976).CrossRefGoogle Scholar
  10. [10]
    R. Rungta, V. Buzek, C. M. Caves, M. Hillery, G. J. Milburn, and W. K. Wootters, Phys. Rev. A 64, 042315 (2001).Google Scholar
  11. [11]
    S. Albeverio and S. M. Fei, J. Opt. B, 31 (2001).Google Scholar
  12. [12]
    F. Mintert, M. Kuś and A. Buchleitner, Concurrence of mixed bipartite quantum states of arbitrary dimensions, quant-ph/0403063.Google Scholar
  13. [13]
    A. Uhlmann, J. Phys. A: Math. Gen. 34, 7074 (2001); please, use revised version: quantph/ 0011106.CrossRefGoogle Scholar
  14. [14]
    A. Uhlmann, Int. J. Theor. Phys. 42, 983 (2003).CrossRefGoogle Scholar
  15. [15]
    S. Fei, J. Jost, X. Li-Jost, and G. Wang, Phys. Lett. A 310, 333 (2003).Google Scholar
  16. [16]
    A. Uhlmann, Open Sys. Information Dyn. 5, 209 (1998).CrossRefGoogle Scholar
  17. [17]
    F. Benatti, A. Narnhofer, and A. Uhlmann, Int. J. Theor. Phys. 42, 983 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of LeipzigGermany

Personalised recommendations