Open Systems & Information Dynamics

, Volume 11, Issue 4, pp 401–409 | Cite as

Spin-Orbit Entanglement in Time Evolution of Radial Wave Packets in Hydrogenic Systems

  • Marcin Turek
  • Piotr Rozmej


Time evolution of radial wave packets built from the eigenstates of Dirac equation for a hydrogenic system is considered. Radial wave packets are constructed from the states of different n quantum numbers and the same lowest angular momentum. In general they exhibit a kind of breathing motion with dispersion and (partial) revivals. Calculations show that for some particular preparations of the wave packet one can observe interesting effects in spin motion, coming from inherent entanglement of spin and orbital degrees of freedom. These effects manifest themselves through some oscillations in the mean values of spin operators and through changes of spatial probability density carried by upper and lower components of the wave function. It is also shown that the characteristic time scale of predicted effects (called Tls) is much smaller for radial wave packets than in other cases, reaching values comparable to (or even less than) the time scale for the wave packet revival.


Wave Function Angular Momentum Time Evolution Quantum Number Characteristic Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Parker and C.R. Stroud Jr., Phys. Rev. Lett. 56, 716 (1986).CrossRefPubMedGoogle Scholar
  2. [2]
    I. Sh. Averbukh and N. F. Perelman, Phys. Lett. A 139, 449 (1989); Zh. Eksp. Teor. Fiz. 96, 818 (1989); Sov. Phys. JETP 69, 464 (1989); Usp. Fiz. Nauk 161, 41 (1991); Sov. Phys. Usp. 34, 572 (1991).Google Scholar
  3. [3]
    N. Nauenberg, J. Phys. B: At. Mol. Opt. Phys. 23, L385 (1990).CrossRefGoogle Scholar
  4. [4]
    Z. Dačic-Gaeta and C.R. Stroud Jr., Phys. Rev. A. 42, 6803 (1990).Google Scholar
  5. [5]
    A. Peres, Phys. Rev. 47, 5196 (1993).Google Scholar
  6. [6]
    R. Bluhm and V. A. Kostelecky, Phys. Rev. A 50, R4445 (1994); Phys. Lett. A 200, 308 (1995); Phys. Rev. A 51, 4767 (1995).Google Scholar
  7. [7]
    R. Bluhm, V. A. Kostelecky, and J. A. Porter, Am. J. Phys. 64, 944 (1996).CrossRefGoogle Scholar
  8. [8]
    G. Alber and P. Zoller, Phys. Reports 5, 231 (1991); B. M. Garraway and K. A. Suominen, Rep. Prog. Phys. 58, 365 (1995).Google Scholar
  9. [9]
    G. Alber, H. Ritsch, and P. Zoller, Phys. Rev. A 34, 1058 (1986).CrossRefPubMedGoogle Scholar
  10. [10]
    J. A. Yeazell, M. Mallalieu, J. Parker, and C. R. Stroud Jr, Phys. Rev. A 40, 5040 (1989).CrossRefPubMedGoogle Scholar
  11. [11]
    J. A. Yeazell, M. Mallalieu, and C.R. Stroud Jr, Phys. Rev. Lett. 64, 2007 (1990).CrossRefPubMedGoogle Scholar
  12. [12]
    R. Arvieu, P. Rozmej, and M. Turek, Phys. Rev. A 62, 022514 (2000).CrossRefGoogle Scholar
  13. [13]
    P. Rozmej, M. Turek, R. Arvieu, and I. Sh. Averbukh, J. Phys. A: Math. Gen. 35, 7803 (2002).CrossRefGoogle Scholar
  14. [14]
    M. Turek, Relativistic effects in time evolution of wave packets, PhD thesis (in Polish), University Maria Curie-Skłodowska, Lublin, 2002.Google Scholar
  15. [15]
    C. E. Chang, Phys. Rev. A 31, 495 (1985).CrossRefPubMedGoogle Scholar
  16. [16]
    F. Grossman, J.-M. Rost and W.P. Schleich, J. Phys. A 30, L227 (1997); P. Rozmej and R. Arvieu, Eur. Phys. J. A 5, 357 (1999); R. Bonifacio, I. Marzoli and W.P. Schleich, J. Mod. Optics 47, 2891 (2000).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Marcin Turek
    • 1
  • Piotr Rozmej
    • 2
  1. 1.Institute of PhysicsMaria Curie-Skłodowska UniversityLublinPoland
  2. 2.Institute of PhysicsUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations