A second-order fast compact scheme with unequal time-steps for subdiffusion problems

Abstract

In consideration of the initial singularity of the solution, a temporally second-order fast compact difference scheme with unequal time-steps is presented and analyzed for simulating the subdiffusion problems in several spatial dimensions. On the basis of sum-of-exponentials technique, a fast Alikhanov formula is derived on general nonuniform meshes to approximate the Caputo’s time derivative. Meanwhile, the spatial derivatives are approximated by the fourth-order compact difference operator, which can be implemented by a fast discrete sine transform via the FFT algorithm. So the proposed algorithm is computationally efficient with the computational cost about \(O(MN\log M\log N)\) and the storage requirement \(O(M\log N)\), where M and N are the total numbers of grids in space and time, respectively. With the aids of discrete fractional Grönwall inequality and global consistency analysis, the unconditional stability and sharp H1-norm error estimate reflecting the regularity of solution are established rigorously by the discrete energy approach. Three numerical experiments are included to confirm the sharpness of our analysis and the effectiveness of our fast algorithm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Google Scholar 

  2. 2.

    Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Li, C.P., Chen, A., Ye, J.J.: Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 230, 3352–3368 (2011)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Lv, C.W., Xu, C.J.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2699–A2724 (2016)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D frational subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)

    MathSciNet  Article  Google Scholar 

  9. 9.

    McLean, W.: Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52, 123–138 (2010)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Jin, B.T., Lazarov, R., Zhou, Z.: An analysis of the l1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Sakamoto, K., Yamamoto, M.: Initial value/boundary value prolems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Yuste, S.B., Quintana-Murillo, J.: A finite difference method with non-uniform timesteps for fractional diffusion equation. Comput. Phys. Commun. 183, 2594–2600 (2012)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Mustapha, K., Aimutawa, J.: A finite difference method for an anomalous sub-diffusion equation, theory and applications. Numer. Algo. 61, 525–543 (2012)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Zhang, Y.N., Sun, Z.Z., Liao, H.-L.: Finite difference methods for the time fractional diffusion equation on nonuniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Li, C.P., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Appl. Math. 316, 614–631 (2016)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Liao, H.-L., Li, D.F., Zhang, J.W.: Sharp error estimate of the nonuniform l1 formula for linear reaction-subdiffusion equation. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Liao, H.-L., McLean, W., Zhang, J.W.: A discrete grönwall inequality with application to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57, 218–237 (2019)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Liao, H.-L., McLean, W., Zhang, J.W.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. arXiv:1803.09873v2 (2018)

  20. 20.

    Ren, J.C., Liao, H.-L., Zhang, J.W., Zhang, Z.M.: Sharp h1-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems. arXiv:1811.08059v1 (2018)

  21. 21.

    Ke, R.H., Ng, M.K., Sun, H.W.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equation. J. Comput. Phys. 303, 203–211 (2015)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Baffet, D., Hesthaven, J.S.: A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55, 496–520 (2017)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Yan, Y.G., Sun, Z.Z., Zhang, J.W.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22, 1028–1048 (2017)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Shen, J.Y., Sun, Z.Z., Du, R.: Fast finite difference schemes for time-fractional diffusion equations with a weak singularity at initial time. East Asia J. Appl. Math. 8, 834–858 (2018)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Liao, H.-L., Yan, Y.G., Zhang, J.W.: Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations. J. Sci. Comput. 80, 1–25 (2019)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Wang, H.Q., Zhang, Y., Ma, X., Qiu, J., Liang, Y.: An efficient implementation of fourth-order compact finite difference scheme for Poisson equation with Dirichlet boundary conditions. Commun. Math. Appl. 71, 1843–1860 (2016)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Wang, H.Q., Ma, X., Lu, J.L., Cao, W.: An efficient time-splitting compact finite difference method for Gross-Pitaevskii equation. Appl. Math. Comput. 297, 131–144 (2017)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hong-lin Liao.

Additional information

Fundding information

Xin Li is financially supported by a grant KJ2018A0523 from the University Natural Science Research Key Project of Anhui Province. Hong-lin Liao is financially supported by a grant 1008-56SYAH18037 from NUAA Scientific Research Starting Fund of Introduced Talent and a grant DRA2015518 from 333 High-level Personal Training Project of Jiangsu Province.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liao, Hl. & Zhang, L. A second-order fast compact scheme with unequal time-steps for subdiffusion problems. Numer Algor 86, 1011–1039 (2021). https://doi.org/10.1007/s11075-020-00920-x

Download citation

Keywords

  • Subdiffusion problems
  • Fast Alikhanov formula
  • Compact difference operator
  • Fractional Grönwall inequality
  • Sharp H 1-norm error estimate