Preconditioners and their analyses for edge element saddle-point systems arising from time-harmonic Maxwell’s equations

Abstract

We derive and propose a family of new preconditioners for the saddle-point systems arising from the edge element discretization of the time-harmonic Maxwell’s equations in three dimensions. With the new preconditioners, we show that the preconditioned conjugate gradient method can apply for the saddle-point systems when wave numbers are smaller than a positive critical number, while the iterative methods like the preconditioned MINRES may apply when wave numbers are larger than the critical number. The spectral behaviors of the resulting preconditioned systems for some existing and new preconditioners are analyzed and compared, and several two-dimensional numerical experiments are presented to demonstrate and compare the efficiencies of these preconditioners.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Ashby, S. F., Manteuffel, T. A., Saylor, P. E.: A taxonomy for conjugate gradient methods. SIAM J. Numer. Anal. 27, 1542–1568 (1990)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Benzi, M., Golub, G. H., Liesen, J.: Numerical solutions of saddle point problems. Acta Numerica 14, 1–137 (2005)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications, Vol. 44 of Springer series in computational mathematics. Springer, Berlin (2013)

    Google Scholar 

  4. 4.

    Chen, Z., Du, Q., Zou, J.: Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37, 1542–1570 (2000)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Cheng, G. -H., Huang, T. -Z., Shen, S. -Q.: Block triangular preconditioners for the discretized time-harmonic Maxwell equations in mixed form. Comput. Phys. Commun. 180, 192–196 (2009)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Demkowicz, L., Vardapetyan, L.: Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements. Comput. Methods Appl. Mech. Engrg. 152, 103–124 (1998)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Estrin, R., Greif, C.: On nonsingular saddle-point systems with a maximally rank deficient leading block. SIAM J. Matrix Anal. Appl. 36, 367–384 (2015)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Greif, C., Schötzau, D.: Preconditioners for the discretized time-harmonic Maxwell equations in mixed form. Numer. Lin. Algebra Appl. 14, 281–297 (2007)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numerica 11, 237–339 (2002)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Hiptmair, R., Xu, J.: Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. SIAM J. Numer. Anal. 45, 2483–2509 (2007)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Houston, P., Perugia, I., Schötzau, D.: Mixed discontinuous Galerkin approximation of the Maxwell operator: Non-stabilized formulation. J. Sci. Comput. 22-23, 315–346 (2005)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Hu, Q., Zou, J.: Nonlinear inexact Uzawa algorithms for linear and nonlinear saddle-point problems. SIAM J. Optimiz. 16, 798–825 (2006)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Hu, Q., Zou, J.: Two new variants of nonlinear inexact Uzawa algorithms for saddle-point problems. Numer. Math. 93, 333–359 (2002)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Kolev, T., Vassilevski, P.: Some experience with a H1-based auxiliary space AMG for H(curl) problems, Report UCRL-TR-221841, LLNL, Livermore CA (2006)

  15. 15.

    Li, D., Greif, C., Schötzau, D.: Parallel numerical solution of the time-harmonic Maxwell equations in mixed form. Numer. Lin. Algebra Appl. 19, 525–539 (2012)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Monk, P.: Analysis of a finite element method for Maxwell’s equations. SIAM J. Numer. Anal. 29, 714–729 (1992)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Nédélec, J. C.: Mixed finite elements in \(\mathbb {R}^{3}\). Numer. Math. 35, 315–341 (1980)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Niceno, B.: EasyMesh. http://web.mit.edu/easymesh_v1.4/www/easymesh.html

  19. 19.

    Perugia, I., Schötzau, D., Monk, P.: Stabilized interior penalty methods for the time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Eng. 191, 4675–4697 (2002)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Perugia, I., Simoncini, V.: Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations. Numer. Lin. Alg. Appl. 7, 585–616 (2000)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Perugia, I., Simoncini, V., Arioli, M.: Linear algebra methods in a mixed approximation of magnetostatic problems. SIAM J. Sci. Comput. 21, 1085–1101 (1999)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Pestana, J., Wathen, A. J.: Combination preconditioning of saddle point systems for positive definiteness. Numer. Lin. Algebra Appl. 20, 785–808 (2013)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Wu, S. L., Huang, T. Z., Li, C. X.: Modified block preconditioners for the discretized time-harmonic Maxwell equations in mixed form. J. Comput. Appl. Math. 237, 419–431 (2013)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Zeng, Y., Li, C.: New preconditioners with two variable relaxation parameters for the discretized time-harmonic Maxwell wquations in mixed form. Math. Comput. Probl. Eng. 2012, 1–13 (2012)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for their many insightful and constructive comments and suggestions that have helped us improve the structure and results of the paper essentially.

Funding

The research of this project was financially supported by the National Natural Science Foundation of China under grants 11571265 and 11471253. The work of J. Zou was substantially supported by Hong Kong RGC General Research Fund (Project 14304517) and NSFC/Hong Kong RGC Joint Research Scheme 2016/17 (Project N_CUHK437/16).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Zou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Xiang, H., Zhang, S. et al. Preconditioners and their analyses for edge element saddle-point systems arising from time-harmonic Maxwell’s equations. Numer Algor 86, 281–302 (2021). https://doi.org/10.1007/s11075-020-00889-7

Download citation

Keywords

  • Time-harmonic Maxwell’s equations
  • Saddle-point system
  • Preconditioners

Mathematics Subject Classification (2010)

  • 65F10
  • 65N22
  • 65N30