The global convergence of the BFGS method under a modified Yuan-Wei-Lu line search technique

Abstract

This paper is focused on improving global convergence of the modified BFGS algorithm with Yuan-Wei-Lu line search formula. This improvement has been achieved by presenting a different line search approach and it is proved that the BFGS method with this line search converges globally if the function to be minimized has Lipschitz continuous gradients. The performance of the suggested algorithm is investigated via mathematical analysis and a simulation study.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Fu, Z., Ren, K., Shu, J., Sun, X., Huang, F.: Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel Distrib. Syst. 27(9), 2546–2559 (2016)

    Google Scholar 

  2. 2.

    Xia, Z., Wang, X., Zhang, L., Qin, Z., Sun, X., Ren, K.: A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans. Inf. Forensic. Secur. 11(11), 2594–2608 (2016)

    Google Scholar 

  3. 3.

    Broyden, C.G.: The convergence of a class of double-rank minimization algorithms 1. general considerations. IMA J. Appl. Math. 6(1), 76–90 (1970)

    MATH  Google Scholar 

  4. 4.

    Fletcher, R.: A new approach to variable metric algorithms. Comput. J. 13 (3), 317–322 (1970)

    MATH  Google Scholar 

  5. 5.

    Goldfarb, D.: A family of variable-metric methods derived by variational means. Math. Comput. 24(109), 23–26 (1970)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Shanno, D.F.: Conditioning of quasi-newton methods for function minimization. Math. Comput. 24(111), 647–656 (1970)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Powell, M.J.: Some global convergence properties of a variable metric algorithm for minimization without exact line searches. Nonlinear Programm. 9(1), 53–72 (1976)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Andrei, N.: A double parameter scaled BFGS method for unconstrained optimization. J. Comput. Appl. Math. 332, 26–44 (2018)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Broyden, C.G., Dennis, J. Jr, Moré, J.J.: On the local and superlinear convergence of quasi-Newton methods. IMA J. Appl. Math. 12(3), 223–245 (1973)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Dennis, J.E., Moré, J.J.: A characterization of superlinear convergence and its application to quasi-Newton methods. Math. Comput. 28(126), 549–560 (1974)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Griewank, A., Toint, P.L.: Local convergence analysis for partitioned quasi-Newton updates. Numer. Math. 39(3), 429–448 (1982)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Dai, Y.-H.: Convergence properties of the BFGS algorithm. SIAM J. Optim. 13(3), 693–701 (2002)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Yuan, G., Wei, Z., Lu, X.: Global convergence of BFGS and PRP methods under a modified weak wolfe–powell line search. Appl. Math. Model. 47, 811–825 (2017)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Yuan, G., Sheng, Z., Wang, B., Hu, W., Li, C.: The global convergence of a modified BFGS method for nonconvex functions. J. Comput. Appl. Math. 327, 274–294 (2018)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Nocedal, J., Wright, S.J.: Numerical optimization 2nd (2006)

  16. 16.

    Byrd, R.H., Nocedal, J.: A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM J. Numer. Anal. 26(3), 727–739 (1989)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Li, D.H., Fukushima, M.: On the global convergence of the BFGS method for nonconvex unconstrained optimization problems. SIAM J. Optim. 11(4), 1054–1064 (2001)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Andrei, N.: An unconstrained optimization test functions collection. Adv. Model. Optim. 10(1), 147–161 (2008)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Yuan, Y., Sun, W., et al.: Theory and Methods of Optimization. Science Press of China, Beijing (1999)

    Google Scholar 

  20. 20.

    Dolan, E.D., Moré, J. J.: Benchmarking optimization software with performance profiles. Math. Programm. 91(2), 201–213 (2002)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Polyak, B.T.: The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 9(4), 94–112 (1969)

    MATH  Google Scholar 

  22. 22.

    Polak, E., Ribiere, G.: Note sur la convergence de méthodes de directions conjuguées, Revue franċaise D’informatique et de Recherche opérationnelle. Sér. Rouge 3(16), 35–43 (1969)

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alireza Hosseini Dehmiry.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hosseini Dehmiry, A. The global convergence of the BFGS method under a modified Yuan-Wei-Lu line search technique. Numer Algor 84, 781–793 (2020). https://doi.org/10.1007/s11075-019-00779-7

Download citation

Keywords

  • Quasi-Newton method
  • BFGS method
  • Global convergence
  • Unconstrained optimization

Mathematics Subject Classification (2010)

  • 90C26