Skip to main content
Log in

Parameter-robust preconditioning for the optimal control of the wave equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we propose and analyze a new matching-type Schur complement preconditioner for solving the discretized first-order necessary optimality conditions that characterize the optimal control of wave equations. Coupled with this is a recently developed second-order implicit finite difference scheme used for the full space-time discretization of the optimality system of PDEs. Eigenvalue bounds for the preconditioned system are derived, which provide insights into the convergence rates of the preconditioned Krylov subspace method applied. Numerical examples are presented to validate our theoretical analysis and demonstrate the effectiveness of the proposed preconditioner, in particular its robustness with respect to very small regularization parameters, and all mesh sizes in the spatial variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The term “matching” refers to the fact that both terms of the exact Schur complement are captured within the approximation. In more detail, the multiplication of \((\check I_{h}^{1/2}\hat I_{h}^{1/2})\hat I_{h}^{-1} (\hat I_{h}^{1/2} \check I_{h}^{1/2})\) leads to the first term \(\check I_{h}\) on the right of the expression (6), with the second term \(\gamma L_{h}^{{\intercal }} \hat I_{h}^{-1} L_{h}\) obtained by the multiplication of \((\sqrt {\gamma } L_{h}^{{\intercal }}) \hat I_{h}^{-1} (\sqrt {\gamma } L_{h})\).

References

  1. Borzì, A., Kunisch, K., Kwak, D.Y.: Accuracy and convergence properties of the finite difference multigrid solution of an optimal control optimality system. SIAM J. Control Optim. 41(5), 1477–1497 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Borzì, A., Schulz, V.: Computational Optimization of Systems Governed by Partial Differential Equations. SIAM, Philadelphia (2012)

    MATH  Google Scholar 

  3. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer, New York (2009)

    MATH  Google Scholar 

  4. Lions, J. -L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York (1971)

    MATH  Google Scholar 

  5. Tröltzsch, F.: Optimal Control of Partial Differential Equations. AMS, Providence (2010)

    MATH  Google Scholar 

  6. Gunzburger, M.D.: Perspectives in Flow Control and Optimization. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  7. Jameson, A.: Aerodynamic design via control theory. J. Sci. Comput. 3(3), 233–260 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Bergounioux, M., Bonnefond, X., Haberkorn, T., Privat, Y.: An optimal control problem in photoacoustic tomography. Math. Model. Methods Appl. Sci. 24 (12), 2525–2548 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Pearson, J.W., Wathen, A.J.: A new approximation of the Schur complement in preconditioners for PDE-constrained optimization. Numer. Linear Alg. Appl. 19 (5), 816–829 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Pearson, J.W., Wathen, A.J.: Fast iterative solvers for convection–diffusion control problems. Electron. Trans. Numer. Anal. 40, 294–310 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Pearson, J.W., Stoll, M., Wathen, A.J.: Regularization-robust preconditioners for time-dependent PDE-constrained optimization problems. SIAM J. Matrix Anal. Appl. 33(4), 1126–1152 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Pearson, J.W., Stoll, M.: Fast iterative solution of reaction–diffusion control problems arising from chemical processes. SIAM J. Sci. Comput. 35(5), B987–B1009 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Schöberl, J., Zulehner, W.: Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems. SIAM J. Matrix Anal. Appl. 29(3), 752–773 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Schöberl, J., Simon, R., Zulehner, W.: A robust multigrid method for elliptic optimal control problems. SIAM J. Numer. Anal. 49(4), 1482–1503 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Zulehner, W.: Nonstandard norms and robust estimates for saddle point problems. SIAM J. Matrix Anal. Appl. 32(2), 536–560 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Bai, Z. -Z.: Block preconditioners for elliptic PDE-constrained optimization problems. Computing 91(4), 379–395 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Bai, Z. -Z., Benzi, M., Chen, F., Wang, Z. -Q.: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal. 33(1), 343–369 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Heinkenschloss, M.: A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems. J. Comput. Appl. Math. 173(1), 169–198 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Rincon, A., Liu, I. -S.: On numerical approximation of an optimal control problem in linear elasticity. Divulg. Mat. 11(2), 91–107 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Bergounioux, M., Ito, K., Kunisch, K.: Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37(4), 1176–1194 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Li, B., Liu, J., Xiao, M.: A fast and stable preconditioned iterative method for optimal control problem of wave equations. SIAM J. Sci Comput. 37(6), A2508–A2534 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Porcelli, M., Simoncini, V., Tani, M.: Preconditioning of active-set Newton methods for PDE-constrained optimal control problems. SIAM J. Sci. Comput. 37 (5), S472–S502 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Schiela, A., Ulbrich, S.: Operator preconditioning for a class of inequality constrained optimal control problems. SIAM J. Optim. 24(1), 435–466 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Stoll, M., Wathen, A.: Preconditioning for partial differential equation constrained optimization with control constraints. Numer. Linear Alg. Appl. 19(1), 53–71 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Elvetun, O.L., Nielsen, B.F.: PDE-constrained optimization with local control and boundary observations: Robust preconditioners. SIAM J. Sci. Comput. 38(6), A3461–A3491 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Mardal, K. -A., Nielsen, B.F., Nordaas, M.: Robust preconditioners for PDE-constrained optimization with limited observations. BIT Numer. Math. 57(2), 405–431 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Pearson, J.W., Gondzio, J.: Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization. Numer. Math. 137(4), 959–999 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Chen, K.: Matrix Preconditioning Techniques and Applications. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  30. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

  31. Pearson, J.W., Wathen, A.: Matching Schur Complement Approximations for Certain Saddle-Point Systems. In: Dick, J., Kuo, F. Y., Wozniakowski, H. (eds.) Contemporary Computational Mathematics – A Celebration of the 80th Birthday of Ian Sloan. Springer (2018)

  32. Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12(4), 617–629 (1975)

    MathSciNet  MATH  Google Scholar 

  33. Hackbusch, W.: Elliptic Differential Equations: Theory and Numerical Treatment. Springer, Berlin (2017)

    MATH  Google Scholar 

  34. Ernst, O.G.: Residual-minimizing Krylov subspace methods for stabilized discretizations of convection–diffusion equations. SIAM J. Matrix Anal. Appl. 21(4), 1079–1101 (2000)

    MathSciNet  MATH  Google Scholar 

  35. Liesen, J., Strakos, Z.: Convergence of GMRES for tridiagonal Toeplitz matrices. SIAM J. Matrix Anal. Appl. 26(1), 233–251 (2004)

    MathSciNet  MATH  Google Scholar 

  36. Noschese, S., Pasquini, L., Reichel, L.: Tridiagonal Toeplitz matrices: properties and novel applications. Numer. Linear Alg. Appl. 20(2), 302–326 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd edn. Clarendon Press, Oxford (1985)

  38. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric matrix systems. SIAM. J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    MATH  Google Scholar 

  39. Bai, Z. -Z.: Structured preconditioners for nonsingular matrices of block two-by-two structures. Math. Comp. 75(254), 791–816 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Govaerts, W., Pryce, J.: A singular value inequality for block matrices. Linear Alg. Appl. 125, 141–148 (1989)

    MathSciNet  MATH  Google Scholar 

  41. Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21(6), 1969–1972 (2000)

    MathSciNet  MATH  Google Scholar 

  42. Notay, Y.: A new analysis of block preconditioners for saddle point problems. SIAM J. Matrix Anal. Appl. 35(1), 143–173 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Silvester, D., Elman, H., Ramage, A.: Incompressible Flow and Iterative Solver Software (IFISS) version 3.6, http://www.manchester.ac.uk/ifiss/ (February 2019)

  44. Elman, H., Ramage, A., Silvester, D.: Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow. ACM Trans. Math. Softw. 33, 2–14 (2007)

    MATH  Google Scholar 

  45. Elman, H., Ramage, A., Silvester, D.: IFISS: A computational laboratory for investigating incompressible flow problems. SIAM Rev. 56, 261–273 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Kröner, A., Kunisch, K., Vexler, B.: Semismooth Newton methods for optimal control of the wave equation with control constraints. SIAM J. Control Optim. 49(2), 830–858 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Maday, Y., Turinici, G.: A parareal in time procedure for the control of partial differential equations. C. R. Math. 335(4), 387–392 (2002)

    MathSciNet  MATH  Google Scholar 

  48. Mathew, T.P., Sarkis, M., Schaerer, C.E.: Analysis of block parareal preconditioners for parabolic optimal control problems. SIAM J. Sci. Comput. 32(3), 1180–1200 (2010)

    MathSciNet  MATH  Google Scholar 

  49. Choi, H., Hinze, M., Kunisch, K.: Instantaneous control of backward-facing step flows. Appl. Numer. Math. 31(2), 133–158 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank an anonymous referee for their constructive and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jun Liu’s research was supported by a “Seed Grants for Transitional and Exploratory Projects” (STEP) Award (FY2019) from the SIUE Graduate School. John W. Pearson’s research was supported by the Engineering and Physical Research Council (EPSRC) Fellowship EP/M018857/2, and a Fellowship of The Alan Turing Institute in London.

Appendix A

Appendix A

Lemma A.1

LetZN = pendiag([1,− 2, 1, 0, 0]) be a squarematrix with dimensionN × N,then its inverse is a lower triangular Toeplitz matrix with the followingexpression:

$$ Z_{N}^{-1}=\text{LTToeplitz}([1,2,\cdots,N-1,N]^{{\intercal}}), $$

in which \([1,2,\cdots ,N-1,N]^{{\intercal }}\) gives the first column of \(Z_{N}^{-1}\).

Proof

We prove the above statement by mathematical induction on the dimension N. When N = 3, the result holds, since it is straightforward to verify that:

$$ Z_{3}^{-1}=\left[\begin{array}{ccc} 1 & 0 & 0\\ -2 & 1 & 0\\ 1 & -2 & 1 \end{array}\right]^{-1} =\left[\begin{array}{ccc} 1 & 0 & 0\\ 2 & 1 & 0\\ 3 & 2 & 1 \end{array}\right] =\text{LTToeplitz}([1,2,3]^{{\intercal}}). $$

Now, we assume the conclusion is true for N = k and proceed to show the conclusion also holds for N = k + 1. When N = k + 1, we have the following recursive block structure:

$$ \begin{array}{@{}rcl@{}} Z_{k+1}&=\left[ \begin{array}{ccccccccccccccccccccccccccccccccccccc} 1 & 0 &0 &0& {\cdots} &0 \\ -2 & 1&0&0 &{\cdots} & 0 \\ 1&-2&1&0&\ddots& {\vdots} \\ 0&\ddots&{\ddots} &{\ddots} &{\ddots} & \vdots\\ 0& 0& {\ddots} &-2&1 &0 \\ 0&0&{\cdots} &1& -2 &1 \end{array}\right] = \left[ \begin{array}{ccccccccccccccccccccccccccccccccccccc} 1&0\\ z&Z_{k} \end{array}\right], \end{array} $$

where \(z=[-2,1,0,\cdots ,0]^{{\intercal }}\). A simple step of block Gaussian elimination leads to

$$ \left[ \begin{array}{ccccccccccccccccccccccccccccccccccccc} 1&0\\ -z&I \end{array}\right] \left[ \begin{array}{ccccccccccccccccccccccccccccccccccccc} 1&0\\ z&Z_{k} \end{array}\right]= \left[ \begin{array}{ccccccccccccccccccccccccccccccccccccc} 1&0\\ 0&Z_{k} \end{array}\right], $$

which hence implies:

$$ Z_{k+1}^{-1}=\left[ \begin{array}{ccccccccccccccccccccccccccccccccccccc} 1&0\\ z&Z_{k} \end{array}\right]^{-1} = \left[ \begin{array}{ccccccccccccccccccccccccccccccccccccc} 1&0\\ 0&Z_{k}^{-1} \end{array}\right] \left[ \begin{array}{ccccccccccccccccccccccccccccccccccccc} 1&0\\ -z&I \end{array}\right] = \left[ \begin{array}{ccccccccccccccccccccccccccccccccccccc} 1&0\\ -Z_{k}^{-1}z& Z_{k}^{-1} \end{array}\right]. $$
(A.1)

By the inductive assumption, it holds that:

$$ Z_{k}^{-1}=\text{LTToeplitz}([1,2,\cdots,k-1,k]^{{\intercal}}). $$

Based on this, we can also easily obtain (noting that \(z=[-2,1,0,\cdots ,0]^{{\intercal }}\) only contains nonzeros in the first two entries) that:

$$ -Z_{k}^{-1}z=[2,3,\cdots,k+1]^{{\intercal}}. $$

Inserting both blocks back into (A.1), we arrive at the following desired lower triangular Toeplitz matrix:

$$ Z_{k+1}^{-1}= \left[ \begin{array}{ccccccccccccccccccccccccccccccccccccc} 1 & 0 &0 &0& {\cdots} &0 \\ 2 & 1&0&0 &{\cdots} & 0 \\ 3& 2&1&0&\ddots& {\vdots} \\ \vdots&\ddots&{\ddots} &{\ddots} &{\ddots} & \vdots\\ k& \ddots& {\ddots} &2&1 &0 \\ k+1&k&{\cdots} &3& 2 &1 \end{array}\right] =\text{LTToeplitz}([1,2,\cdots,k-1,k,k+1]^{{\intercal}}), $$

which therefore completes the proof by the principle of mathematical induction. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Pearson, J.W. Parameter-robust preconditioning for the optimal control of the wave equation. Numer Algor 83, 1171–1203 (2020). https://doi.org/10.1007/s11075-019-00720-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00720-y

Keywords

Navigation