Skip to main content

Advertisement

Log in

Error analysis of HDG approximations for elliptic variational inequality: obstacle problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this article, we study the HDG approximation for the obstacle problem, i.e., variational inequalities, with remarkable convergence properties. Using polynomials of degree k ≥ 0 for both the potential u and the flux q, we show that the approximations of the potential and flux converge in L2 with the optimal order of k + 1 . The approximate trace of the potential is proved to converge with optimal order k + 1 in L2. Finally, numerical results are presented to verify these theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedman, A.: Variational Principles and Free-Boundary Problems. second edition. Robert E. Krieger Publishing Variational Inc., Malabar (1988)

  2. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications Pure and Applied Mathematics, vol. 88. Academic, New York (A Subsidiary of Harcourt Brace Jovanovich, Publishers) (1980)

  3. Rodrigues, J.-F.: Obstacle Problems in Mathematical Physics, volume 134 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam (1987). Notas de Matematica [Mathematical Notes], 114

    Google Scholar 

  4. Brezis, H., Stampacchia, G.: Sur la regularite de la solution d’inequations elliptiques. Bull. Soc. Math. France 96, 153–180 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lions, J.: Quelques Methodes De R6solution Des Probl+Mes Aux Limites Non Lin6aires. Dunod, Paris (1969)

    Google Scholar 

  6. Fichera, G.: Boundary value problems of elasticity with unilateral con- straints. Handbuch der Physik, Band VI a/2, Mechanics of Solids II Springer, 1972, pp. 391–424

  7. Frehse, J.: On the regularity of the solution of a second order variational inequality. Boll. Un. Mat. Ital.(4) 6, 312–315 (1972)

    MathSciNet  MATH  Google Scholar 

  8. Brezzi, F., Hager, W.W., Raviart, P.A.: Error estimates for the finite element solution of variational inequalities part i. primal theorey. Numer. Math. 28, 431–443 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hlavacek: Dual finite element analysis for unilateral boundary value problems. Apl. Mat. 22, 14–51 (1977)

    MathSciNet  MATH  Google Scholar 

  10. Brezzi, F., Hager, Raviart, P.A.: Error estimates for the finite element solution of variational inequalities part II. Mixed methods. Numer. Math. 31, 1–16 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kikuchi, N.: Convergence of a penalty method for variational inequalities. TICOM Report 79-16 the University of Texas at Austin (1979)

  12. Glowinski, R., Lions, J.-L., Tremolieres, R.: Numerical Analysis of Variational In- equalities, North-Holland, Amsterdam (1981)

  13. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)

    Book  MATH  Google Scholar 

  14. Hoppe, R.H.W., Kornhuber, R.: Adaptive multilevel methods for obstacle problems. SIAM J. Numer. Anal. 31, 301–323 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Blum, H., Suttmeier, F.-T.: Weighted error estimates for finite element solutions of variational inequalities. Computing 65, 119–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yan, N.: A posteriori error estimators of gradient recovery type for elliptic obstacle problems[J]. Adv. Comput. Math. 15(1-4), 333–361 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, F., Han, W., Cheng, X.L.: Discontinuous Galerkin methods for solving elliptic variational inequalities[J]. SIAM J. Numer. Anal. 48(2), 708–733 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hlavacek: Dual finite element analysis for elliptic problems with obstacles on the boundary

  19. Cockburn, B., Gopalakrishnan, J.: A characterization of hybridized mixed methods for second order elliptic Problems[J]. SIAM J. Numer. Anal. 42(1), 283–301 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cockburn, B., Dong, B., Guzman, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77, 1887–1916 (2008). MR2429868 (2009d:65166)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cockburn, B.: Unified hybridization of discontinuous galerkin, mixed and continuous galerkin methods for second order elliptic Problems[J]. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, B, Xie, X.: Analysis of a family of HDG methods for second order elliptic problems [J]. J. Comput. Appl. Math. 307, 37–51 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This subject is supported partially by NSFC No. 11672032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Wu, H. & Xiong, C. Error analysis of HDG approximations for elliptic variational inequality: obstacle problem. Numer Algor 81, 445–463 (2019). https://doi.org/10.1007/s11075-018-0556-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0556-5

Keywords

Mathematics Subject Classification (2010)

Navigation