Advertisement

Three kinds of hybrid algorithms and their numerical realizations for a finite family of quasi-asymptotically pseudocontractive mappings

  • Xing Hui Gao
  • Le Rong Ma
  • Hai Yun Zhou
Original Paper
  • 32 Downloads

Abstract

The purpose of this article is to propose three new hybrid projection methods for a finite family of quasi-asymptotically pseudocontractive mappings. The strong convergence of the algorithms is proved in real Hilbert spaces. Some numerical experiments are also included to compare and explain the effectiveness of the proposed methods.

Keywords

Quasi-asymptotically pseudocontractive mappings Hybrid algorithms Strong convergence Hilbert spaces 

Mathematics Subject Classification (2010)

47H05 47H09 47H10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

This study is supported by the National Natural Science Foundation of China under grant (11071053; 61751217); Natural Science Basic Research Plan in Shaanxi Province of China (2014JM2-1003; 2016JM6082); and Scientific research project of Yan’an University (YD2016-12).

References

  1. 1.
    Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Halpern, B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Genel, A., Lindenstrass, J.: An example concerning fixed points. Isr. J. Math. 22, 81–86 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Youla, D.: Mathematical theory of image restoration by the method of convex projection. In: Stark, H (ed.) Image Recovery: Theory and Applications, pp. 29–77. Academic Press, Orlando (1987)Google Scholar
  5. 5.
    Moudafi, A.: Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241, 46–55 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Xu, H.K.: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279–291 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26(2), 248–264 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Podilchuk, C.I., Mammone, R.J.: Image recovery by convex projections using a least-squares constraint. J. Opt. Soc. Am. 7(3), 517–521 (1990)CrossRefGoogle Scholar
  9. 9.
    Xu, H.K.: A variable Krasnoselskii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Combettes, P.L.: On the numerical robustness of the parallel projection method in signal synthesis. IEEE Signal Process. Lett. 8, 45–47 (2001)CrossRefGoogle Scholar
  11. 11.
    Nakajo, K., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 279, 372–379 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Marino, G., Xu, H.K.: Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl. 329, 336–349 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zhou, H.Y.: Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl. 343, 546–556 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zhou, H.Y.: Demiclosedness principle with applications for asymptotically pseudo-contractions in Hilbert spaces. Nonlinear Anal. 70, 3140–3145 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Zhou, H.Y., Su, Y.F.: Strong convergence theorems for a family of quasi-asymptotic pseudo-contractions in Hilbert spaces. Nonlinear Anal. 70, 4047–4052 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Chang, S.S.: Viscosity approximation methods for a finite family of nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 323, 1402–1416 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Yao, Y.H.: A general iterative method for a finite family of nonexpansive mappings. Nonlinear Anal. 66, 2676–2687 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Dong, Q.L., Lu, Y.Y., Yang, J.F.: Cyclic hybrid methods for finding common fixed points of a finite family of nonexpansive mappings. J. Nonlinear Sci. Appl. 9, 2000–2005 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zhou, H.Y., Wang, P.Y.: A new iteration method for variational inequalities on the set of common fixed points for a finite family of quasi-pseudocontractions in Hilbert spaces. J. Inequal. Appl. 2014, Art. No. 218 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Liu, Y., Zheng, L., Wang, P., Zhou, H.Y.: Three kinds of new hybrid projection methods for a finite family of quasi-asymptotically pseudocontractive mappings in Hilbert spaces. Fixed Point Theory Appl. 2015, Art. No. 118 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Anh, P.K., Chung, C.V.: Parallel hybrid methods for a finite family of relatively nonexpansive mappings. Numer. Funct. Anal. Optim. 35, 649–664 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Anh, P.K., Hieu, D.V.: Parallel hybrid iterative methods for variational inequalities, equilibrium problems, and common fixed point problems. Vietnam. J. Math. 44(2), 351–374 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Anh, P.K., Hieu, D.V.: Parallel and sequential hybrid methods for a finite family of asymptotically quasi ϕ-nonexpansive mappings. J. Appl. Math. Comput. 48, 241–263 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    He, S., Yang, C., Duan, P.: Realization of the hybrid method for Mann iterations. Appl. Math. Comput. 217, 4239–4247 (2010)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Goebel, K., Kirk, W.A.: A fixed point theorem for asymptotically nonexpansive mappings. Proc. Amer. Math. Soc. 35(1), 171–174 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Rhoades, B.E.: Comments on two fixed point iteration methods. J. Math. Anal. Appl. 56(2), 741–750 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Berinde, V.: Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators. Fixed Point Theory Appl. 2, 97–105 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Phuengrattana, W., Suantai, S.: On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval. J. Comput. Appl. Math. 235, 3006–3014 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mathematics and Computer ScienceYan’an UniversityShaanxiPeople’s Republic of China
  2. 2.Department of MathematicsShijiazhuang Mechanical Engineering CollegeShijiazhuangPeople’s Republic of China

Personalised recommendations