Advertisement

Fast convergence of an inexact interior point method for horizontal complementarity problems

  • C. A. Arias
  • J. M. Martínez
Original Paper

Abstract

In Andreani et al. (Numer. Algorithms 57:457–485, 2011), an interior point method for the horizontal nonlinear complementarity problem was introduced. This method was based on inexact Newton directions and safeguarding projected gradient iterations. Global convergence, in the sense that every cluster point is stationary, was proved in Andreani et al. (Numer. Algorithms 57:457–485, 2011). In Andreani et al. (Eur. J. Oper. Res. 249:41–54, 2016), local fast convergence was proved for the underdetermined problem in the case that the Newtonian directions are computed exactly. In the present paper, it will be proved that the method introduced in Andreani et al. (Numer. Algorithms 57:457–485, 2011) enjoys fast (linear, superlinear, or quadratic) convergence in the case of truly inexact Newton computations. Some numerical experiments will illustrate the accuracy of the convergence theory.

Keywords

Horizontal complementarity problems Interior point methods Global convergence Inexact Newton method Projected gradients Local convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful to the associated editor and an anonymous referee for valuable comments and suggestions.

Funding information

This work has been partially supported by the Brazilian agencies FAPESP (grants 2010/10133-0, 2013/03447-6, 2013/05475-7, 2013/07375-0, and 2014/18711-3) and CNPq (grants 309517/2014-1 and 03750/2014-6), and by the International Relationship Direction (DRI) of the University of Valle and COLCIENCIAS.

References

  1. 1.
    Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: Augmented Lagrangian methods under the constant positive linear dependence constraint qualification. Math. Program. 111, 5–32 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Andreani, R., Júdice, J.J., Martínez, J.M., Martini, T.: Feasibility problems with complementarity constraints. Eur. J. Oper. Res. 249, 41–54 (2016)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Andreani, R., Júdice, J.J., Martínez, J.M., Patricio, J.: On the natural merit function for solving complementarity problems. Math. Program. 130, 211–223 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Andreani, R., Júdice, J.J., Martínez, J.M., Patricio, J.: A projected-gradient interior-point algorithm for complementarity problems. Numer. Algorithms 57, 457–485 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Arenas, F.E., Martínez, H.J., Pérez, R.: Least change secant update methods for nonlinear complementarity problem. Ing. Cienc. 11, 11–36 (2015)CrossRefGoogle Scholar
  6. 6.
    Arias, C.A., Martínez, H.J., Pérez, R.: A global quasi-Newton algorithm for nonlinear complementarity problem. Pac. J. Optim. 13(1), 1–15 (2017)MathSciNetGoogle Scholar
  7. 7.
    Bellavia, S.: Inexact interior-point method. J. Optim. Theory Appl. 96, 109–121 (1998)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer Ser. Oper. Res. Financ. Eng. (2003)Google Scholar
  9. 9.
    Fernandes, L., Friedlander, A., Guedes, M.C., Júdice, J.: Solution of a general linear complementarity problem using smooth optimization and its applications to bilinear programming and LCP. Appl. Math. Optim 43, 1–19 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ferris, M.C., Kanzow, C., Munson, T.S.: Feasible descent algorithms for mixed complementarity problems. Math. Program. 86(475), 497 (1999)MathSciNetMATHGoogle Scholar
  11. 11.
    Ferris, M.C., Pang, J.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Freund, R.W., Jarre, F., Mizuno, S: Convergence of a class of inexact interior-point algorithms for linear programs. Math. Oper. Res. 24, 50–71 (1999)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gondzio, J.: Matrix-free interior point method. Comput. Optim. Appl. 51, 457–480 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kojima, M., Megiddo, N., Noma, T., Yoshise, A.: A unified approach to interior-point algorithms for linear complementarity problems. Lect. Notes Comput. Sci. 58, 1–112 (1991)MATHGoogle Scholar
  15. 15.
    Kostreva, M.: Elasto-hydrodynamic lubrication: a non-linear complementarity problem. Int. J. Numer. Methods Fluids 4, 377–397 (1984)CrossRefMATHGoogle Scholar
  16. 16.
    Li, L., Toh, K.: An inexact interior point method for L 1 regularized sparse covariance selection. Math. Prog. Comput. 2, 291–315 (2010)CrossRefMATHGoogle Scholar
  17. 17.
    Murty, K.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann Verlag, Berlin (1988)MATHGoogle Scholar
  18. 18.
    Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. ICE 36, 325–378 (1952)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ValleCaliColombia
  2. 2.Department of Applied Mathematics, Institute of Mathematics, Statistics, and Scientific Computing (IMECC)University of CampinasCampinasBrazil

Personalised recommendations