Skip to main content
Log in

Always convergent methods for nonlinear equations of several variables

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We develop always convergent methods for solving nonlinear equations of the form \(f\left (x\right ) =0\) (\(f:\mathbb {R}^{n}\rightarrow \mathbb {R}^{m}\), \(x\in B=\times _{i=1}^{n}\left [ a_{i},b_{i}\right ] \)) under the assumption that f is continuous on B. The suggested methods use continuous space curves lying in the rectangle B and have a kind of monotone convergence to the nearest zero on the given curve, if it exists, or the iterations leave the region in a finite number of steps. The selection of space curves is also investigated. The numerical test results indicate the feasibility and limitations of the suggested methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abaffy, J., Forgó, F.: Globally convergent algorithm for solving nonlinear equations. J. Optim. Theory App. 77, 291–304 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abaffy, J., Galántai, A.: An always convergent algorithm for global minimization of multivariable continuous functions. Acta Polytechnica Hungarica (submitted)

  3. Bader, M.: Space-Filling Curves An Introduction with Applications in Scientific Computing. Springer (2013)

  4. Bauman, K.E.: The dilation factor of the Peano-Hilbert curve. Math. Notes 80(5), 609–620 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bebendorf, M.: Hierarchical Matrices. Springer (2008)

  6. Buckley, S.: Space-filling curves and related functions. Irish Math. Soc. Bull. 36, 9–18 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Butz, A.R.: Space filling curves and mathematical programming. Inf. Control. 12, 314–330 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  8. Butz, A.R.: Convergence with Hilbert’s space filling curve. J. Comput. Syst. Sci. 3, 128–146 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  9. Butz, A.R.: Alternative algorithms for Hilbert’s space-filling curve. IEEE Trans. Comput. 424–426 (1971)

  10. Butz, A.R.: Solutions of nonlinear equations with space filling curves. J. Math. Anal. Appl. 37, 351–383 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cherruault, Y.: Mathematical Modelling in Biomedicine. D. Reidel Publishing Company, Dordrecht (1986)

    Google Scholar 

  12. Cherruault, Y., Mora, G.: Optimisation Globale. Théorie des courbes α-denses, Economica, Paris. ISBN 2-7178-5065-1 (2005)

  13. Dellnitz, M., Schütze, O., Sertl, S.: Finding zeros by multilevel subdivision techniques. IMA J. Numer. Anal. 22, 167–185 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dolan, E.D., Moré, J.J.: Benchmarking optimizations software with performance profiles. Math. Program. Series A 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Galántai, A., Abaffy, J.: Always convergent iteration methods for nonlinear equations of Lipschitz functions. Numer Algor 69, 443–453 (2015). doi:10.1007/s11075-014-9905-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Galántai, A.: Always convergent methods for solving nonlinear equations. J. Comput. Appl. Mech. 10(2), 183–208 (2015)

    MATH  Google Scholar 

  17. Guillez, A.: Alienor, fractal algorithm for multivariable problems. Mathl Comput. Modell. 14, 245–247 (1990)

    Article  MATH  Google Scholar 

  18. Kálovics, F.: A reliable method for solving nonlinear systems of equations of few variables. Computing 48, 291–302 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kálovics, F.: Creating and handling box valued functions used in numerical methods. J. Comput. Appl. Math. 147, 333–348 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kálovics, F., Mészáros, G.: Box valued functions in solving systems of equations and inequalities. Numer. Algor. 36, 1–12 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer (1996)

  22. Molinaro, A., Sergeyev, Ya.D.: An efficient algorithm for the zero crossing detection in digitized measurement signal. Measurement 30, 187–196 (2001)

    Article  Google Scholar 

  23. Molinaro, A., Sergeyev, Ya.D.: Finding the minimal root of an equation with the multiextremal and nondifferentiable left-hand part. Numer. Algor. 28, 255–272 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mora, G.: The Peano curves as limit of α-dense curves. Rev. R. Acad. Cien. Serie A. Mat. 99(1), 23–28 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20,1, 172–191 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pietrus, A.: A globally convergent method for solving nonlinear equations without the differentiability condition. Numer. Algor. 13, 60–76 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pintér, J.D.: Global Optimization in Action. Kluwer (1996)

  28. Roose, A., Kulla, V., Lomp, M., Meressoo (eds.): Test Examples of Systems on Nonlinear Equations Version, vol. 3–90. Estonian Software and Computer Service Company, Tallinn (1990)

  29. Sagan, H.: Space-filling Curves. Springer (1994)

  30. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer (2013)

  31. Smiley, M.W., Chun, C.: An algorithm for finding all solutions of a nonlinear system. J. Comput. Appl. Math. 137, 293–315 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Strongin, R.G.: On the convergence of an algorithm for finding a global extremum. Eng. Cybern. 11(4), 549–555 (1973)

    MathSciNet  Google Scholar 

  33. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints. Springer (2000)

  34. Szabó, Z.: Über gleichungslösende Iterationen ohne Divergenzpunkt I-III. Publ. Math. Debrecen 20, 222–233 (1973)

    MATH  Google Scholar 

  35. Szabó, Z.: Über gleichungslösende Iterationen ohne Divergenzpunkt I-III. Publ. Math. Debrecen 21, 285–293 (1974)

    MathSciNet  MATH  Google Scholar 

  36. Szabó, Z.: Über gleichungslösende Iterationen ohne Divergenzpunkt I-III. Publ. Math. Debrecen 27, 185–200 (1980)

    MathSciNet  MATH  Google Scholar 

  37. Szabó, Z.: Ein Erveiterungsversuch des divergenzpunkfreien Verfahrens der Berührungsprabeln zur Lösung nichtlinearer Gleichungen in normierten Vektorverbänden. Rostock Math. Kolloq. 22, 89–107 (1983)

    MATH  Google Scholar 

  38. Targonszky, G.: An always convergent iteration process. Acta Mathematica Hungarica 4(1-2), 119–126 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  39. Törn, A., Zilinskas, A.: Global Optimization, Lecture Notes in Computer Science, pp. 350. Springer (1987)

  40. Várterész, M.: Iterációs eljárások nem-lineáris egyenletek megoldására (Always convergent iterations for the solution of nonlinear equations). PhD Thesis, Kossuth University, Debrecen. In Hungarian, mek.oszk.hu/00800/00858/00858.pdf (1998)

  41. Weyl, H.: Randbemerkungen zu Hauptproblemen der Mathematik. Math. Z. 20, 131–150 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zumbusch, G.: Parallel Multilevel Methods: Adaptive Mesh Refinement and Loadbalancing. B.G. Teubner, Stuttgart-Leipzig-Wiesbaden (2003)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The author is indebted to the unknown referee whose remarks and suggestions improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Galántai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galántai, A. Always convergent methods for nonlinear equations of several variables. Numer Algor 78, 625–641 (2018). https://doi.org/10.1007/s11075-017-0392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0392-z

Keywords

Mathematics Subject Classification (2010)

Navigation