Skip to main content
Log in

An explicitly uncoupled VMS stabilization finite element method for the time-dependent Darcy-Brinkman equations in double-diffusive convection

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this article, a full explicitly uncoupled variational multiscale (VMS) stabilization finite element method for solving the Darcy-Brinkman equations in double-diffusive convection is proposed. This method introduces three uncoupled VMS treatments for the velocity, the temperature, and the concentration as the postprocessing steps at each time step, respectively. We only need first to solve three full decoupled linear problems and then to solve three full decoupled postprocessing problems. This method is easy to implement because the existing codes can be used. The unconditional stability is proved and the a priori error estimates are derived. A series of numerical experiments are also given to confirm the theoretical analysis and to demonstrate the efficiency of the new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, N., Rebollo, T.C., John, V., Rubino, S.: A review of variational multiscale methods for the simulation of turbulent incompressible flows. Arch. Comput. Method. Eng. 24, 115–164 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Belenli, M.A., Kaya, S., Rebholz, L.G.: An explicitly decoupled variational multiscale method for incompressible, non-isothermal flows. Comput. Methods Appl. Math. 15, 1–20 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belenli, M.A., Kaya, S., Rebholz, L.G., Wilson, N.E.: A subgrid stabilization finite element method for incompressible magnetohydrodynamics. Int. J. Comput. Math. 90, 1506–1523 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  5. Case, M.A., Ervin, V.J., Linke, A., Rebholz, L.G.: A connection between Scott-Vogelius and grad-div stabilized Taylor-Hood FE approximations of the Navier-Stokes equations. SIAM J. Numer. Anal. 49, 1461–1481 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, G., Feng, M.: Explicitly uncoupled variational multiscale for characteristic finite element methods based on the unsteady Navier-Stokes equations with high Reynolds number. Appl. Math. Model. 39, 4202–4212 (2015)

    Article  MathSciNet  Google Scholar 

  7. Çıbık, A., Kaya, S.: A projection-based stabilized finite element method for steady-state natural convection problem. J. Math. Anal. Appl. 381, 469–484 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Çıbık, A., Kaya, S.: Finite element analysis of a projection-based stabilization method for the Darcy-Brinkman equations in double-diffusive convection. Appl. Numer. Math. 64, 35–49 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cibik, A.B.: Numerical Analysis of a Projection-Based Stabilization Method for the Natural Convection Problems. Ph.D. thesis, Middle East Technical University (2011)

  10. Fortin, M.: Calcul numérique des écoulements de fluides de bingham et des fluides newtoniens incompressibles par la méthode des éléments finis. Ph.D. thesis (1972)

  11. Galvin, K.J.: New subgrid artificial viscosity Galerkin methods for the Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 200, 242–250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer, New York (2012)

    MATH  Google Scholar 

  13. Goyeau, B., Songbe, J.P., Gobin, D.: Numerical study of double-diffusive natural convection in a porous cavity using the Darcy-Brinkman formulation. Int. J. Heat Mass Trans. 39, 1363–1378 (1996)

    Article  MATH  Google Scholar 

  14. Gresho, P.M., Lee, R.L., Chan, S.T., Sani, R.L.: Solution of the time-dependent incompressible Navier-Stokes and Boussinesq equations using the Galerkin finite element method. In: Approximation Methods for Navier-Stokes Problems, pp. 203–222. Springer, Berlin (1980)

  15. Guermond, J.L., Marra, A., Quartapelle, L.: Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers. Comput. Methods Appl. Mech. Eng. 195, 5857–5876 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gunzburger, M.: Finite Element Methods for Incompressible Viscous Flows: a Guide to Theory, Practice and Algorithms. Academic, Boston (1989)

    Google Scholar 

  17. Hecht, F.: New development in Freefem + +. J. Numer. Math. 20, 251–266 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hughes, T.J., Mazzei, L., Jansen, K.E.: Large eddy simulation and the variational multiscale method. Comput. Vis. Sci. 3, 47–59 (2000)

    Article  MATH  Google Scholar 

  20. John, V., Kaya, S.: A finite element variational multiscale method for the Navier-Stokes equations. SIAM J. Sci. Comput. 26, 1485–1503 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kaya, S., Riviere, B.: A two-grid stabilization method for solving the steady-state Navier-Stokes equations. Numer. Methods Partial Differ. Equ. 22, 728–743 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Layton, W., Röhe, L., Tran, H.: Explicitly uncoupled VMS stabilization of fluid flow. Comput. Methods Appl. Mech. Eng. 200, 3183–3199 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Loewe, J., Lube, G.: A projection-based variational multiscale method for large-eddy simulation with application to non-isothermal free convection problems. Math. Models Methods Appl. Sci. 22, 1150011 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Melhem, H.G.: Finite Element Approximation to Heat Transfer Through Combined Solid and Fluid Media. PhD thesis, University of Pittsburgh (1987)

  25. Mojtabi, A., Charrier-Mojtabi, M.C.: Double-diffusive convection in porous media. In: Vafai, K (ed.) Handbook of Porous Media, pp. 559–603. Marcel Dekker, New York (2000)

  26. Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2006)

    MATH  Google Scholar 

  27. Shan, L., Layton, W.J., Zheng, H.: Numerical analysis of modular VMS methods with nonlinear eddy viscosity for the Navier-Stokes equations. Int. J. Numer. Anal. Model. 10, 943–5971 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Taylor, C., Hood, P.: A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids 1, 73–100 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  29. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  30. Trevisan, O.V., Bejan, A.: Natural convection with combined heat and mass transfer buoyancy effects in a porous medium. Int. J. Heat Mass Transf. 28, 1597–1611 (1985)

    Article  Google Scholar 

  31. Yang, Y.B., Jiang, Y.L.: Numerical analysis and computation of a type of IMEX method for the time-dependent natural convection problem. Comput. Methods Appl. Math. 16, 321–344 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, Y.B., Jiang, Y.L.: Analysis of two decoupled time-stepping finite element methods for incompressible fluids with microstructure. Preprint, to appear in Int. J. Comput. Math. https://doi.org/10.1080/00207160.2017.1294688

  33. Zhang, Y., Wang, Z., Tang, Q.: Fully discrete subgrid stabilized finite element method for the Darcy-Drinkman equations in double-diffusion convection. In: 2015 International Conference on Advanced Mechatronic Systems (ICAMechS), pp. 413–417. IEEE (2015)

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (NSFC) under grants 11371287 and 61663043 and the Natural Science Basic Research Plan in Shaanxi Province of China under grant 2016JM5077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Lin Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YB., Jiang, YL. An explicitly uncoupled VMS stabilization finite element method for the time-dependent Darcy-Brinkman equations in double-diffusive convection. Numer Algor 78, 569–597 (2018). https://doi.org/10.1007/s11075-017-0389-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0389-7

Keywords

Mathematics Subject Classification (2010)

Navigation