Advertisement

Numerical Algorithms

, Volume 78, Issue 2, pp 553–567 | Cite as

C 0IPG adaptive algorithms for the biharmonic eigenvalue problem

  • Hao Li
  • Yidu Yang
Original Paper

Abstract

This paper focuses on C 0IPG adaptive algorithms for the biharmonic eigenvalue problem with the clamped boundary condition. We prove the reliability and efficiency of the a posteriori error indicator of the approximating eigenfunctions and analyze the reliability of the a posteriori error indicator of the approximating eigenvalues. We present two adaptive algorithms, and numerical experiments indicate that both algorithms are efficient.

Keywords

C0IPG methods A posteriori error analysis Adaptive algorithms The biharmonic eigenvalue problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors cordially thank the editor and the referees for their valuable comments and suggestions that lead to the large improvement of this paper.

This work is supported by Science and Technology Foundation of Guizhou Province of China (Grant No. LH [2014] 7061) and the National Natural Science Foundation of China (Grant No.11561014).

References

  1. 1.
    Ainsworth, M., Oden, J.T.: A Posteriori Error Estimates in the Finite Element Analysis. Wiley-Inter science, New York (2011)zbMATHGoogle Scholar
  2. 2.
    Babuška, I., Kellog, R.B., Pitkaranta, J.: Direct and inverse error estimates for finite elements with mesh refinement. Numer. Math. 33, 447–471 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Babuška, I., Osborn, J.E.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Finite Element Methods (Part 1), Handbook of Numerical Analysis, vol. 2, pp 640–787. Elsevier Science Publishers, North-Holand (1991)Google Scholar
  4. 4.
    Babuška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Method Appl. Sci. 2, 556–581 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brenner, S.C.: C 0 interior penalty methods. In: Frontiers in Numerical Analysis-Durham 2010, Lecture Notes in Computational Science and Engineering 85, pp. 79-147. Springer, Berlin (2012)Google Scholar
  7. 7.
    Brenner, S.C., Monk, P., Sun, J.: C 0 IPG method for biharmonic eigenvalue problems. In: Kirby, R.M., et al. (eds.) Spectral and High Order Methods for Partial Differential Equations, ICOSAHOM 2014, Lecture Notes in Computational Science and Engineering 106. Springer International Publishing, Switzerland (2015)Google Scholar
  8. 8.
    Brenner, S.C., Sung, L.: C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22/23, 83–118 (2005)CrossRefzbMATHGoogle Scholar
  9. 9.
    Brenner, S.C., Neilan, M.: A C 0 interior penalty method for a fourth order elliptic singular perturbation problem. SIAM J. Numer. Anal. 49, 869–892 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brenner, S.C., Gu, S., Gudi, T., Sung, L.-Y, quadratic, A.: C 0 interior penalty method for linear fourth order boundary value problems with boundary conditions of the Cahn-Hilliard type. SIAM J. Numer. Anal. 50, 2088–2110 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, New York (2002)CrossRefGoogle Scholar
  12. 12.
    Brenner, S.C., Wang, K., Zhao, J.: Poincaré-Friedrichs inequalities for piecewise H 2 functions. Numer. Funct. Anal. Optim. 25, 463–478 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Brenner, S.C., et al.: Adaptive C 0 interior penalty method for biharmonic eigenvalue problems. In: Numerical Solution of PDE Eigenvalue Problems, Oberwolfach Rep. 10(4), pp. 3265–3267 (2013)Google Scholar
  14. 14.
    Carstensen, C., Gallistl, D.: Guaranteed lower eigenvalue bounds for the biharmonic equation. Numer. Math. 125, 33–51 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chen, L.: iFEM: an innovative finite element methods package in MATLAB. Technical Report, University of California at Irvine (2009)Google Scholar
  16. 16.
    Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Handbook of Numerical Analysis, vol. 2. Elsevier Science Publishers B.V., North-Holand (1991)CrossRefGoogle Scholar
  17. 17.
    Dai, X., Xu, J., Zhou, A.: Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110, 313–355 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Engel, G., Garikipati, K., Hughes, T., Larson, M., Mazzei, L., Taylor, R.: Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191, 3669–3750 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Geng, H., Ji, X., Sun, J., Xu, L.: C 0IP methods for the transmission eigenvalue problem. J. Sci. Comput. 68, 326–338 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gudi, T.: A new error analysis for discontinuous finite element methods for the linear elliptic problems. Math. Comput. 79, 2169–2189 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hu, J., Huang, Y., Lin, Q.: Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods. J. Sci. Comput. 61, 196–221 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. Science Press, Beijing (2006)Google Scholar
  23. 23.
    Lin, Q., Xie, H., Xu, J.: Lower bounds of the discretization for piecewise polynomials. Math. Comput. 83, 1–13 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Morin, P., Nochetto, R.H., Siebert, K.: Convergence of adaptive finite element methods. SIAM Rev. 44, 631–658 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Oden, J.T., Reddy, J.N.: An Introduction to the Mathematical Theory of Finite Elements. Courier Dover Publications, New York (2012)zbMATHGoogle Scholar
  26. 26.
    Quan, S.: A posteriori error estimates of the Morley element for the fourth order elliptic eigenvalue problem. Numer. Algor. 68, 455–466 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Rannacher, R.: Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33, 23–42 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Shi, Z., Wang, M.: Finite Element Methods. Science Press, Beijing (2013)Google Scholar
  29. 29.
    Verfürth, R.: A Review of a Posteriori Error Estimates and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, New York (1996)zbMATHGoogle Scholar
  30. 30.
    Wells, G.N., Dung, N.T.: A C 0 discontinuous Galerkin formulation for Kirhhoff plates. Comput. Methods Appl. Mech. Eng. 196, 3370–3380 (2007)CrossRefzbMATHGoogle Scholar
  31. 31.
    Yang, Y., Li, H., Bi, H.: The lower bound property of the Morley element eigenvalues. Comput. Math. Appl. 72, 904–920 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Yang, Y., Zhang, Z., Lin, F.: Eigenvalue approximation from below using nonforming finite elements. Sci. China Math. 53, 137–150 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zienkiewicz, O.C.: The Finite Element Method in Engineering Science. McGraw-Hill, London (1971)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Mathematical SciencesGuizhou Normal UniversityGuiyangChina

Personalised recommendations