Numerical Algorithms

, Volume 78, Issue 2, pp 513–533 | Cite as

Speckle noise removal in ultrasound images by first- and second-order total variation

  • Si Wang
  • Ting-Zhu Huang
  • Xi-Le Zhao
  • Jin-Jin Mei
  • Jie Huang
Original Paper

Abstract

Speckle noise contamination is a common issue in ultrasound imaging system. Due to the edge-preserving feature, total variation (TV) regularization-based techniques have been extensively utilized for speckle noise removal. However, TV regularization sometimes causes staircase artifacts as it favors solutions that are piecewise constant. In this paper, we propose a new model to overcome this deficiency. In this model, the regularization term is represented by a combination of total variation and high-order total variation, while the data fidelity term is depicted by a generalized Kullback-Leibler divergence. The proposed model can be efficiently solved by alternating direction method with multipliers (ADMM). Compared with some state-of-the-art methods, the proposed method achieves higher quality in terms of the peak signal to noise ratio (PSNR) and the structural similarity index (SSIM). Numerical experiments demonstrate that our method can remove speckle noise efficiently while suppress staircase effects on both synthetic images and real ultrasound images.

Keywords

Speckle noise Total variation High-order total variation Alternating direction method with multipliers Generalized Kullback-Leibler divergence Ultrasound images 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank Meriem Hacini (Laboratoire d’ Automatique et de Robotique, Algeria) for providing the real ultrasound images. This research is supported by 973 Program (2013CB329404), NSFC (61370147, 11401081, 61402082).

References

  1. 1.
    Abd-Elmoniem, K.Z., Youssef, A.-B.M., Kadah, Y.M.: Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion. IEEE Trans. Biomed. Eng. 49, 997–1014 (2002)CrossRefGoogle Scholar
  2. 2.
    Bertero, M., Boccacci, P., Desiderà, G., Vicidomini, G.: Image deblurring with poisson data: from cells to galaxies. Inverse Probl. 25, 123006 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3, 492–526 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Caiszar, I.: Why least squares and maximum entropy? an axiomatic approach to inference for linear inverse problems. Ann. Stat. 8, 2032–2066 (1991)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chen, Y., Huang, T.-Z., Deng, L.-J., Zhao, X.-L., Wang, M.: Group sparsity based regularization model for remote sensing image stripe noise removal. Neurocomputing. doi: 10.1016/j.neucom.2017.05.018  10.1016/j.neucom.2017.05.018, http://www.sciencedirect.com/science/article/pii/S0925231217308287 (2017)
  7. 7.
    Chen, Y., Huang, T.-Z., Zhao, X.-L., Deng, L.-J., Huang, J.: Stripe noise removal of remote sensing images by total variation regularization and group sparsity constraint. Remote Sens. 9(559). doi: 10.3390/rs9060559 (2017)
  8. 8.
    Coupé, P., Hellier, P., Kervrann, C., Barillot, C.: Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans. Image Process. 18, 2221–2229 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Deledalle, C.-A., Denis, L., Tupin, F.: Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans. Image Process. 18, 2661–2672 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Devi, P.N., Asokan, R.: An improved adaptive wavelet shrinkage for ultrasound despeckling. Sadhana 39, 971–988 (2014)CrossRefGoogle Scholar
  11. 11.
    Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Feng, W., Lei, H., Gao, Y.: Speckle reduction via higher order total variation approach. IEEE Trans. Image Process. 23, 1831–1843 (2014)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2, 17–40 (1976)CrossRefMATHGoogle Scholar
  14. 14.
    Hacini, M., Hachouf, F., Djemal, K.: A new speckle filtering method for ultrasound images based on a weighted multiplicative total variation. Signal Process. 103, 214–229 (2014)CrossRefGoogle Scholar
  15. 15.
    Hansen, P.C., Nagy, J.G., O’leary, D.P.: Deblurring images: matrices, spectra, and filtering. SIAM (2006)Google Scholar
  16. 16.
    He, B., Liao, L.-Z., Han, D., Yang, H.: A new inexact alternating directions method for monotone variational inequalities. Math. Program. 92, 103–118 (2002)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    He, B., Tao, M., Yuan, X.: Alternating direction method with Gaussian back substitution for separable convex programming. SIAM J. Optimiz. 22, 313–340 (2012)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    He, B., Yang, H.: Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Oper. Res. Lett. 23, 151–161 (1998)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Huang, J., Yang, X.: Fast reduction of speckle noise in real ultrasound images. Signal Process. 93, 684–694 (2013)CrossRefGoogle Scholar
  20. 20.
    Huang, Y.-M., Ng, M.K., Wen, Y.-W.: A new total variation method for multiplicative noise removal. SIAM J. Imaging Sci. 2, 20–40 (2009)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ji, T.-Y., Huang, T.-Z., Zhao, X.-L., Ma, T.-H., Deng, L.-J.: A non-convex tensor rank approximation for tensor completion. Appl. Math. Model. 48, 410–422 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Jin, Z., Yang, X.: A variational model to remove the multiplicative noise in ultrasound images. J. Math. Imaging Vis. 39, 62–74 (2011)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Khare, A., Khare, M., Jeong, Y., Kim, H., Jeon, M.: Despeckling of medical ultrasound images using Daubechies complex wavelet transform. Signal Process. 90, 428–439 (2010)CrossRefMATHGoogle Scholar
  24. 24.
    Krissian, K., Kikinis, R., Westin, C.-F., Vosburgh, K.: Speckle-constrained filtering of ultrasound images. CVPR. 2, 547–552 (2005)MATHGoogle Scholar
  25. 25.
    Krissian, K., Vosburgh, K., Kikinis, R., Westin, C.-F.: Anisotropic Diffusion of Ultrasound Constrained by Speckle Noise Model. Laboratory of Mathematics in Imaging, Harvard Medical School, Technical Report (2004)Google Scholar
  26. 26.
    Kuan, D.T., Sawchuk, A.A., Strand, T.C., Chavel, P.: Adaptive restoration of images with speckle. IEEE Trans. Acoust. Speech. 35, 373–383 (1987)CrossRefGoogle Scholar
  27. 27.
    Lefkimmiatis, S., Bourquard, A., Unser, M.: Hessian-based norm regularization for image restoration with biomedical applications. IEEE Trans. Image Process. 21, 983–995 (2012)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Li, F., Ng, M.K., Shen, C.: Multiplicative noise removal with spatially varying regularization parameters. SIAM J. Imaging Sci. 3, 1–20 (2010)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Li, F., Shen, C., Fan, J., Shen, C.: Image restoration combining a total variational filter and a fourth-order filter. J. Vis. Commun. Image. R. 18, 322–330 (2007)CrossRefGoogle Scholar
  30. 30.
    Liu, J., Huang, T.-Z., Selesnick, I.W., Lv, X.-G., Chen, P.-Y.: Image restoration using total variation with overlapping group sparsity. Inf. Sci. 295, 232–246 (2015)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Lopes, A., Touzi, R., Nezry, E.: Adaptive speckle filters and scene heterogeneity. IEEE Trans. Geosci. Remote Sens. 28, 992–1000 (1990)CrossRefGoogle Scholar
  32. 32.
    Loupas, A.: Digital image processing for noise reduction in medical ultrasonics. PhD thesis, University of Edinburgh, UK (1988)Google Scholar
  33. 33.
    Loupas, T., McDicken, W., Allan, P.: An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Trans. Circuits Syst. 36, 129–135 (1989)CrossRefGoogle Scholar
  34. 34.
    Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12, 1579–1590 (2003)CrossRefMATHGoogle Scholar
  35. 35.
    Lysaker, M., Tai, X.-C.: Iterative image restoration combining total variation minimization and a second-order functional. Int. J. Comput. Vision. 66, 5–18 (2006)CrossRefMATHGoogle Scholar
  36. 36.
    Marks, D.L., Ralston, T.S., Boppart, S.A.: Speckle reduction by I-divergence regularization in optical coherence tomography. JOSA A. 22, 2366–2371 (2005)CrossRefGoogle Scholar
  37. 37.
    Mei, J.-J., Dong, Y.-Q., Huang, T.-Z., Yin, W.-T.: Cauchy noise removal by nonconvex ADMM with convergence guarantees. J. Sci. Comput. doi: 10.1007/s10915-017-0460-5 (2017)
  38. 38.
    Michailovich, O.V., Tannenbaum, A.: Despeckling of medical ultrasound images. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 53, 64–78 (2006)CrossRefGoogle Scholar
  39. 39.
    Ng, M.K., Chan, R.H., Tang, W.-C.: A fast algorithm for deblurring models with neumann boundary conditions. SIAM J. Sci. Comput. 21, 851–866 (1999)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Papafitsoros, K., Schönlieb, C.-B.: A combined first and second order variational approach for image reconstruction. J. Math. Imaging Vis. 48, 308–338 (2014)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Parrilli, S., Poderico, M., Angelino, C.V., Verdoliva, L.: A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 50, 606–616 (2012)CrossRefGoogle Scholar
  42. 42.
    Resmerita, E., Engl, H.W., Iusem, A.N.: The expectation-maximization algorithm for ill-posed integral equations: a convergence analysis. Inverse Probl. 23, 2575 (2007)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Rudin, L., Lions, P.-L., Osher, S.: Multiplicative denoising and deblurring: theory and algorithms. In: Geometric Level Set Methods in Imaging, Vision, and Graphics, pp 103–119 (2003)Google Scholar
  44. 44.
    Setzer, S., Steidl, G.: Variational methods with higher order derivatives in image processing. Approximation 12, 360–386 (2008)MathSciNetMATHGoogle Scholar
  45. 45.
    Shi, B., Huang, L., Pang, Z.-F.: Fast algorithm for multiplicative noise removal. J. Vis. Commun. Image R. 23, 126–133 (2012)CrossRefGoogle Scholar
  46. 46.
    Slabaugh, G., Unal, G., Fang, T., Wels, M.: Ultrasound-specific segmentation via decorrelation and statistical region-based active contours. CVPR. 1, 45–53 (2006)Google Scholar
  47. 47.
    Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas-Rachford splitting methods. J. Math. Imaging Vis. 36, 168–184 (2010)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Tur, M., Chin, K.C., Goodman, J.W.: When is speckle noise multiplicative?. Appl. Opt. 21, 1157–1159 (1982)CrossRefGoogle Scholar
  49. 49.
    Tuthill, T., Sperry, R., Parker, K.: Deviations from Rayleigh statistics in ultrasonic speckle. Ultrason. Imaging 10, 81–89 (1988)CrossRefGoogle Scholar
  50. 50.
    Wang, S., Guo, W., Huang, T.-Z., Raskutti, G.: Image inpainting using reproducing kernel Hilbert space and Heaviside function variations. J. Comput. Appl. Math. 311, 551–564 (2017)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)CrossRefGoogle Scholar
  52. 52.
    Wu, C., Tai, X.-C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3, 300–339 (2010)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    You, Y.-L., Kaveh, M.: Fourth-order partial differential equations for noise removal. IEEE Trans. Image Process. 9, 1723–1730 (2000)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Yu, J., Tan, J., Wang, Y.: Ultrasound speckle reduction by a SUSAN-controlled anisotropic diffusion method. Pattern Recogn. 43, 3083–3092 (2010)CrossRefGoogle Scholar
  55. 55.
    Zhao, X.-L., Wang, F., Huang, T.-Z., Ng, M.K., Plemmons, R.J.: Deblurring and sparse unmixing for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 51, 4045–4058 (2013)CrossRefGoogle Scholar
  56. 56.
    Zhao, X.-L., Wang, F., Ng, M.K.: A new convex optimization model for multiplicative noise and blur removal. SIAM J. Imaging Sci. 7, 456–475 (2014)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations