Numerical Algorithms

, Volume 78, Issue 2, pp 449–464 | Cite as

L 1 spline fits via sliding window process: continuous and discrete cases

  • Laurent Gajny
  • Olivier Gibaru
  • Eric Nyiri
Original Paper


The best L 1 approximation of the Heaviside function and the best 1 approximation of multiscale univariate datasets by a cubic spline have a Gibbs phenomenon near the discontinuity. We show by numerical experiments that the Gibbs phenomenon can be reduced by using L 1 spline fits which are the best L 1 approximations in an appropriate spline space obtained by the union of L 1 interpolation splines. We prove here the existence of L 1 spline fits for function approximation which has never previously been done to the best of our knowledge. A major disadvantage of this technique is an increased computation time. Thus, we propose a sliding window algorithm on seven nodes which is as efficient as the global method both for functions and datasets with abrupt changes of magnitude, but within a linear complexity on the number of spline nodes.


Best approximation L1 norm Shape preservation Polynomial spline Heaviside function Sliding window 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank deeply Shu-Cherng Fang and Ziteng Wang from the Industrial and Systems Engineering Department of North Carolina State University and John E. Lavery, retired from the Army Research Office, for their comments and suggestions that improved the contents of this paper.


  1. 1.
    Auquiert, P., Gibaru, O., Nyiri, E.: C 1 and C 2-continuous polynomial parametric Lp splines (p1). Comput. Aided Geom. Des. 24(7), 373–394 (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Auquiert, P., Gibaru, O., Nyiri, E.: On the cubic L 1 spline interpolant to the Heaviside function. Numer. Algorithms 46(4), 321–332 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dobrev, V., Guermond, J.-L., Popov, B.: Surface reconstruction and image enhancement via L 1-minimization. SIAM J. Sci. Comput. 32(3), 1591–1616 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gajny, L., Gibaru, O., Nyiri, E.: L 1 C 1 polynomial spline approximation algorithms for large data sets. Numer. Algorithms 67(4), 807–826 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gajny, L., Gibaru, O., Nyiri, E., Fang, S.-C.: Best L 1 approximation of Heaviside-type functions from Chebyshev and weak-Chebyshev spaces. Numer. Algorithms 75(3), 827–843 (2017)Google Scholar
  6. 6.
    Gajny, L., Nyiri, E., Gibaru, O.: Fast polynomial spline approximation for large scattered data sets via L 1 minimization. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information, volume 8085 of Lecture Notes in Computer Science, pp 813–820. Springer, Berlin (2013)Google Scholar
  7. 7.
    Lavery, J.E.: Shape-preserving, multiscale fitting of univariate data by cubic L 1 smoothing splines. Comput. Aided Geom. Des. 17(7), 715–727 (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Lavery, J.E.: Univariate cubic L p splines and shape-preserving, multiscale interpolation by univariate cubic L 1 splines. Comput. Aided Geom. Des. 17(4), 319–336 (2000)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lavery, J.E.: Shape-preserving approximation of multiscale univariate data by cubic L 1 spline fits. Comput. Aided Geom. Des. 21(1), 43–64 (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Moskona, E., Petrushev, P., Saff, E.B.: The Gibbs phenomenon for best L 1-trigonometric polynomial approximation. Constr. Approx. 11(3), 391–416 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Nürnberger, G.: Approximation by Spline Functions. Springer (1989)Google Scholar
  12. 12.
    Nyiri, É., Gibaru, O., Auquiert, P.: Fast \({L}_{1}^{k}C^{k}\) polynomial spline interpolation algorithm with shape-preserving properties. Comput. Aided Geom. Des. 28(1), 65–74 (2011)CrossRefzbMATHGoogle Scholar
  13. 13.
    Nie, T., Wang, Z., Fang, S.-C., Lavery, J.E.: Convex shape preservation of cubic L 1 spline fits. Annals Data Sci. 4(1), 123–147 (2017)CrossRefGoogle Scholar
  14. 14.
    Pinkus, A.: On L 1-approximation. Cambridge tracts in mathematics. Cambridge University Press, Cambridge (1989). On t.p. 1 is superscriptxGoogle Scholar
  15. 15.
    Saff, E.B., Tashev, S.: Gibbs phenomenon for best L p approximation by polygonal lines. East J. Approximations 5(2), 235–251 (1999)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Wang, Z., Fang, S.-C., Lavery, J.E.: On shape-preserving capability of cubic L 1 spline fits. Comput. Aided Geom. Des. 40(C), 59–75 (2015)CrossRefGoogle Scholar
  17. 17.
    Wang, Z., Lavery, J., Fang, S.-C.: Approximation of irregular geometric data by locally calculated univariate cubic L 1 spline fits. Annal. Data Sci. 1(1), 5–14 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Arts et Métiers ParisTechLSIS - UMR CNRS 7296LilleFrance
  2. 2.INRIA Lille-Nord-Europe, NON-A Research TeamVilleneuve-d’AscqFrance

Personalised recommendations