Numerical Algorithms

, Volume 78, Issue 2, pp 423–447

# Enclosing the solution set of parametric interval matrix equation A(p)X = B(p)

• Evgenija D. Popova
Original Paper

## Abstract

Consider the parametric matrix equation A(p)X = B(p), where the elements of the matrices A(p) and B(p) depend linearly on a number of uncertain parameters varying within given intervals. We prove that the united parametric solution sets of the matrix equation and that of the corresponding linear system with multiple right-hand sides, although different as sets, have the same interval hull. A generalization of the parametric Krawczyk iteration with low computational complexity for the matrix equation is presented. Some details improving the implementation and the application of this method are discussed. An interval method, designed by A. Neumaier and A. Pownuk for enclosing the united solution set of parametric linear systems with particular dependency structure, is generalized for arbitrary linear dependencies between the parameters and for systems with multiple right-hand sides. A new, more powerful, sufficient condition for regularity of a parametric interval matrix is proven. An important application of the linear systems with multiple right-hand sides is presented as a key methodology for feasibility in computing the interval hull of a class of united parametric solution sets that appear in practical problems.

## Keywords

Linear matrix equations Interval parameters Solution enclosure

## Mathematics subject classification (2010)

65G40 15A24 65F10

## Notes

### Acknowledgements

The author thanks the anonymous reviewers for their comments which helped improving the manuscript.

## References

1. 1.
Dehghani-Madiseh, M., Dehghan, M.: Parametric AE-solution sets to the parametric linear systems with multiple right-hand sides and parametric matrix equation A(p)X = B(p). Numerical Algorithms 73, 245–279 (2016)
2. 2.
Hashemi, B., Dehghan, M.: Results concerning interval linear systems with multiple right-hand sides and the interval matrix equation A x = B. J. Comput. Appl. Math 235, 2969–2978 (2011)
3. 3.
Hladík, M.: Enclosures for the solution set of parametric interval linear systems. Int. J. Appl. Math. Comput. Sci. 22(3), 561–574 (2012)
4. 4.
Jansson, C.: Interval linear systems with symmetric matrices, skew-symmetric matrices, and dependencies in the right hand side. Computing 46, 265–274 (1991)
5. 5.
Kolev, L.: A method for outer interval solution of parametric systems. Reliab. Comput. 10, 227–239 (2004)
6. 6.
Kolev, L.: Componentwise determination of the interval hull solution for linear interval parameter systems. Reliab. Comput. 20, 1–24 (2014)
7. 7.
Muhanna, R.L.: Benchmarks for interval finite element computations web site http://rec.ce.gatech.edu/resources/Benchmark_2.pdf (2004)
8. 8.
Muhanna, R.L., Mullen, R.L.: Uncertainty in mechanics problems interval-based approach. J. Eng. Mech. 127(6), 557–566 (2001)
9. 9.
Neumaier, A.: Interval methods for systems of equations. Cambridge University Press, Cambridge (1990)
10. 10.
Neumaier, A., Pownuk, A.: Linear systems with large uncertainties, with applications to truss structures. Reliab. Comput. 13, 149–172 (2007)
11. 11.
Popova, E.D.: Strong regularity of parametric interval matrices. In: Dimovski, I.I. et al. (eds.) Mathematics and Education in Mathematics, Proceedings of the 33rd Spring Conference of the Union of Bulgarian Mathematicians, Borovets, Bulgaria, BAS, pp. 446–451 (2004)Google Scholar
12. 12.
Popova, E.D.: Generalizing the parametric fixed-point iteration. Proc. Appl. Math. Mech. 4, 680–681 (2004)
13. 13.
Popova, E.D.: Computer-assisted proofs in solving linear parametric problems, Post-proceedings of 12Th GAMM–IMACS Int. Symp. on Scientific Computing, Computer Arithmetic and Valiyeard Numerics. IEEE Computer Society Press, Duisburg, Germany (2006)Google Scholar
14. 14.
Popova, E.D.: Visualizing parametric solution sets. BIT Numer. Math. 48(1), 95–115 (2008)
15. 15.
Popova, E.D.: Explicit description of 2D parametric solution sets. BIT Numer. Math. 52, 179–200 (2012)
16. 16.
Popova, E.D.: On overestimation-free computational version of interval analysis. Int. J. Comput. Methods Eng. Sci. Mech. 14(6), 491–494 (2013)
17. 17.
Popova, E.D.: Improved enclosure for some parametric solution sets with linear shape. Computers and Mathematics with Applications 68(9), 994–1005 (2014)
18. 18.
Popova, E.D., Krämer, W.: Inner and outer bounds for the solution set of parametric linear systems. J. Comput. Appl. Math. 199, 310–316 (2007)
19. 19.
Rama Rao, M.V., Muhanna, R.L., Mullen, R.L.: Interval finite element analysis of thin plates. In: Freitag, S., Muhanna, R.L., Mullen, R.L. (eds.) Proceedings of the NSF Workshop on Reliable Engineering Computing, Ruhr Univ. Bochum, Germany, pp. 111–130 (2016)Google Scholar
20. 20.
Rohn, J., Kreinovich, V.: Computing exact componentwise bounds on solutions of linear systems with interval data is NP-hard. SIAM J. Matrix Anal. Appl. 16, 415–420 (1995)
21. 21.
Rump, S.M.: Verification methods for dense and sparse systems of equations. In: Herzberger, J. (ed.) Topics in Valiyeard Computations, pp. 63–135. Elsevier Science B. V (1994)Google Scholar
22. 22.
Rump, S.M.: A note on epsilon-inflation. Reliab. Comput. 4, 371–375 (1998)
23. 23.
Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic. Acta Numer 19, 287–449 (2010)
24. 24.
Skalna, I.: A method for outer interval solution of systems of linear equations depending linearly on interval parameters. Reliab. Comput. 12(2), 107–120 (2006)
25. 25.
Skalna, I.: A comparison of methods for solving parametric interval linear systems with general dependencies. Numerical Methods and Applications, Lecture Notes in Computer Science 6046, 494–501 (2011)
26. 26.
Skalna, I.: Strong regularity of parametric interval matrices. Linear and Multilinear Algebra. doi: (2017)