Skip to main content
Log in

A new approach for computing consistent initial values and Taylor coefficients for DAEs using projector-based constrained optimization

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This article describes a new algorithm for the computation of consistent initial values for differential-algebraic equations (DAEs). The main idea is to formulate the task as a constrained optimization problem in which, for the differentiated components, the computed consistent values are as close as possible to user-given guesses. The generalization to compute Taylor coefficients results immediately, whereas the amount of consistent coefficients will depend on the size of the derivative array and the index of the DAE. The algorithm can be realized using automatic differentiation (AD) and sequential quadratic programming (SQP). The implementation in Python using AlgoPy and SLSQP has been tested successfully for several higher index problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, W.: Nichtlineare Optimierung. Eine Einführung in Theorie, Verfahren und Anwendungen. Vieweg+Teubner, Wiesbaden (2011)

    MATH  Google Scholar 

  2. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical solution of initial-value problems in differential-algebraic equations. Unabridged, corr. republ. Classics in Applied Mathematics, vol. 14. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA (1996)

  3. Campbell, S.L.: The numerical solution of higher index linear time varying singular systems of differential equations. SIAM J. Sci. Stat. Comput. 6, 334–348 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Campbell, S.L.: A general method for nonlinear descriptor systems: an example from robotic path control. Technical report, Department of Mathematics and Center for Research in Scientific Computing, North Carolina State University CRSC Technical Report 090488-01 (1988)

  5. Campbell, S.L., Griepentrog, E.: Solvability of general differential algebraic equations. SIAM J. Sci Comput. 16(2), 257–270 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Campbell, S.L., Hollenbeck, R.: Automatic differentiation and implicit differential equations. In: Berz, M., et al. (eds.) Computational Differentiation: Techniques, Applications, and Tools. Proceedings of the Second International Workshop on Computational Differentiation, pp. 215–227. SIAM, Philadelphia, PA (1996)

  7. Campbell, S.L., Kunkel, P., Bobinyec, K.: A minimal norm corrected underdetermined Gauß-Newton procedure. Appl. Numer. Math. 62(5), 592–605 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Campbell, S.L., Yeomans, K.D.: Behavior of the nonunique terms in general DAE integrators. Appl. Numer Math. 28(2-4), 209–226 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duff, I.S., Gear, C.W.: Computing the structural index. SIAM J. Algebraic Discret. Methods 7, 594–603 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eich-Soellner, E., Führer, C.: Numerical methods in multibody dynamics European Consortium for Mathematics in Industry. B. G. Teubner., Stuttgart (1998)

    Book  MATH  Google Scholar 

  11. England, R., Gómez, S., Lamour, R.: The properties of differential-algebraic equations representing optimal control problems. Appl. Numer. Math. 59 (2009)

  12. Estévez Schwarz, D., Lamour, R.: The computation of consistent initial values for nonlinear index-2 differential-algebraic equations. Numer. Algorithm. 26 (1), 49–75 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Estévez Schwarz, D., Lamour, R.: A new projector based decoupling of linear DAEs for monitoring singularities. Numer. Algorithm. 73(2), 535–565 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Estévez Schwarz, D., Lamour, R.: Consistent initialization for higher-index DAEs using a projector based minimum-norm specification. Technical Report 1, Institut für Mathematik, Humboldt-Universität zu Berlin. http://www2.mathematik.hu-berlin.de/publ/pre/2013/P-2016-01-2.pdf (2016)

  15. Golub, G.H., Van Loan, C.F.: Matrix computations. John Hopkins University Press, Baltimore and London (1996)

  16. Gopal, V., Biegler, L.T.: A successive linear programming approach for initialization and reinitialization after discontinuities of differential-algebraic equations. SIAM J. Sci. Comput. 20(2), 447–467 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kraft, D.: A software package for sequential quadratic programming. technical report DFVLR-FB 88-28,. Technical report, DLR German Aerospace Center — Institute for Flight Mechanics, Köln, Germany (1988)

  18. Kunkel, P., Mehrmann, V.: Differential-algebraic equations - analysis and numerical solution. EMS Publishing House, Zürich, Switzerland (2006)

    Book  MATH  Google Scholar 

  19. Kunkel, P., Mehrmann, V., Rath, W., Weickert, J.: A new software package for linear differential-algebraic equations. SIAM J. Sci Comput. 18(1), 115–138 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lamour, R., März, R., Tischendorf, C.: Differential-algebraic equations: A projector based analysis. Differential-Algebraic Equations Forum 1. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  21. Mattsson, S.E., Olsson, H., Elmqvist, H.: Dynamic selection of states in Dymola. In: Modelica Workshop, pp. 61–67, Lund, Sweden (2000)

  22. Nedialkov, N.S., Pryce, J.D.: Solving differential-algebraic equations by Taylor series (III): the DAETS code. J. Numer. Anal. Indust. Appl. Math. 1(1), 1–30 (2007)

    MATH  Google Scholar 

  23. Pantelides, C.C.: The consistent initialization of differential-algebraic systems. SIAM J. Sci. Stat. Comput. 9(2), 213–231 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Walter, S.F., Lehmann, L.: Algorithmic differentiation in Python with AlgoPy. J. Comput. Sci. 4(5), 334–344 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Estévez Schwarz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estévez Schwarz, D., Lamour, R. A new approach for computing consistent initial values and Taylor coefficients for DAEs using projector-based constrained optimization. Numer Algor 78, 355–377 (2018). https://doi.org/10.1007/s11075-017-0379-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0379-9

Keywords

Mathematics Subject Classification (2010)

Navigation