Advertisement

Numerical Algorithms

, Volume 77, Issue 4, pp 1117–1139 | Cite as

A numerical method for stationary shock problems with monotonic solutions

  • Relja Vulanović
  • Thái Anh Nhan
Original Paper
  • 64 Downloads

Abstract

Numerical methods are considered for singularly perturbed quasilinear problems having interior-shock solutions. It is shown that the direct discretization on a layer-adapted mesh is ineffective for these problems. A special method is proposed for the case when the solution is monotonic: the problem is transformed by interchanging the dependent and independent variables, and it is then discretized on a uniform mesh. The method is analyzed both theoretically and numerically. It is shown that it can be effective, but that it is not entirely without problems. An approach for improving the method is suggested.

Keywords

Quasilinear boundary value problem Singular perturbation Interior shock Finite differences 

Mathematics Subject Classification (2010)

65L10 65L11 65L12 65L20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Thanks are due to two anonymous reviewers whose comments helped us improve the paper.

References

  1. 1.
    Allgower, E.L., Mccormickm, St.F., Pryor, D.V.: A general mesh independence principle for Newton’s method applied to second order boundary value problems. Computing 23, 233–246 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bohl, E.: Finite Modelle Gewöhnlicher Randwertaufgaben. Teubner, Stuttgart (1981)Google Scholar
  3. 3.
    Chang, K.W., Howes, F.A.: Nonlinear Singular Perturbation Phenomena: Theory and Application (Applied Mathematical Sciences, vol. 56. Springer, New York (1984)Google Scholar
  4. 4.
    Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. Chapman & Hall/CRC, Boca Raton (2000)zbMATHGoogle Scholar
  5. 5.
    Farrell, P.A., O’Riordan, E., Shishkin, G.I.: A class of singularly perturbed quasilinear differential equations with interior layers. Math. Comput. 78, 103–127 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Herman, R.L., Knickerbocker, C.J.: Numerically induced phase shift in the KdV soliton. J. Comput. Phys. 104, 50–55 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Howes, F.A.: Boundary-Interior Layer interactions in nonlinear singular perturbation theory. Mem. Amer. Math. Soc. 203 (1978)Google Scholar
  8. 8.
    Kevorkian, J., Cole, J.D.: Perturbation Methods in Applied Mathematics (Applied Mathematical Sciences, vol. 34). Springer, New York (1980)Google Scholar
  9. 9.
    Lagerstrom, P.A.: Matched Asymptotic Expansions (Applied Mathematical Sciences, vol. 76). Springer, New York (1988)CrossRefzbMATHGoogle Scholar
  10. 10.
    Linß, T.: Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems (Lecture Notes in Mathematics, vol. 1985). Springer, Berlin, Heidelberg (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    Lorenz, J.: Stability and monotonicity properties of stiff quasilinear boundary problems. Univ. u Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 12, 151–175 (1982)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Lorenz, J.: Analysis of difference schemes for a stationary shock problem. SIAM J. Numer. Anal. 21, 1038–1053 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singularly Perturbation Problems. World Scientific, Singapore (1996)CrossRefzbMATHGoogle Scholar
  14. 14.
    O’Malley, R.E. Jr: Singular Perturbation Methods for Ordinary Differential Equations (Applied Mathematical Sciences, vol. 89). Springer, New York (1991)CrossRefGoogle Scholar
  15. 15.
    O’Riordan, E., Quinn, J.: Numerical Method for a Nonlinear Singularly Perturbed Interior Layer Problem. In: Clavero, C., Gracia, J.L., Lisbona, F. (eds.) Proceedings BAIL 2010 (Lecture Notes in Computational Science and Engineering 81), pp. 187–195. Springer, Berlin, Heidelberg (2011)Google Scholar
  16. 16.
    O’Riordan, E., Quinn, J.: Parameter-uniform numerical methods for some linear and nonlinear singularly perturbed convection diffusion boundary turning point problems. BIT 51, 317–337 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    O’Riordan, E., Quinn, J.: A singularly perturbed convection diffusion turning point problem with an interior layer. J. Comp. Meth. Appl. Math. 12, 206–220 (2012)MathSciNetzbMATHGoogle Scholar
  18. 18.
    O’Riordan, E., Quinn, J.: Numerical experiments with a Shishkin numerical method for a singularly perturbed quasilinear parabolic problem with an interior layer. In: Dimov, I., Farago, I., Vulkov, L. (eds.) Numerical Analysis and Its Applications: 5th International Conference, NAA 2012, Lozenetz, Bulgaria, June 15–20, 2012, Revised Selected Papers, (Lecture Notes in Computer Science 8236), pp. 420–427. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Osher, S.: Nonlinear singular perturbation problems and one sided difference schemes. SIAM J. Numer. Anal. 18, 129–144 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Roos, H.-G., Stynes, M., Tobiska L.: Numerical Methods for Singularly Perturbed Differential Equations (Springer Series in Computational Mathematics, 2nd edn, vol. 24). Springer, Berlin (2008)Google Scholar
  21. 21.
    Shishkin, G.I.: Grid approximation of a singularly perturbed quasilinear equation in the presence of a transition layer. Russian Acad. Sci. Dokl. Math. 47, 83–88 (1993)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Shishkin, G.I.: Difference approximation of the Dirichlet problem for a singularly perturbed quasilinear parabolic equation in the presence of a transition layer. Russian Acad. Sci. Dokl. Math. 48, 346–352 (1994)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Vulanović, R.: Finite-difference schemes for quasilinear singular perturbation problems. J. Comp. Appl. Math. 26, 345–365 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Vulanović, R.: Continuous and numerical analysis of a boundary shock problem. Bull. Austral. Math. Soc. 41, 75–86 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Vulanović, R.: A uniform numerical method for a class of quasilinear turning point problems. In: Miller, J.J.H., Vichnevetsky, R. (eds.) Proceedings 13th IMACS World Congress on Computation and Applied Mathematics, p. 493. IMACS, Dublin (1991)Google Scholar
  26. 26.
    Vulanović, R.: Numerical methods for quadratic singular perturbation problems. Proc. Dynamic Systems and Appl. 2, 543–551 (1996)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Vulanović, R.: Boundary shock problems and singularly perturbed Riccati equations. In: Hegarty, A.F., Kopteva, N., O’Riordan, E., Stynes, M. (eds.) Proceedings BAIL 2008 (Lecture Notes in Computational Science and Engineering 69), pp. 277–285. Springer, Berlin, Heidelberg (2009)Google Scholar
  28. 28.
    Zadorin, A.I.: Existence and uniqueness of the solution of certain difference problems for a quasilinear ordinary differential equation with a small parameter. (Russian) Chisl. Metody Mekh. Sploshn. Sredy 15, 33–44 (1984)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Mathematical SciencesKent State University at StarkNorth CantonUSA
  2. 2.Department of MathematicsOhlone CollegeFremontUSA

Personalised recommendations