Skip to main content
Log in

Two difference schemes for solving the one-dimensional time distributed-order fractional wave equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Two difference schemes are derived for numerically solving the one-dimensional time distributed-order fractional wave equations. It is proved that the schemes are unconditionally stable and convergent in the \(L^{\infty }\) norm with the convergence orders O(τ 2 + h 2γ 2) and O(τ 2 + h 4γ 4), respectively, where τ,h, and Δγ are the step sizes in time, space, and distributed order. A numerical example is implemented to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caputo, M.: Diffusion with space memory modelled with distributed order space fractional differential equations. Ann. Geophys. 46, 223–234 (2003)

    MathSciNet  Google Scholar 

  2. Caputo, M.: Distributed order differential equations modelling dielectric induction and diffusion. Fract. Calc. Appl. Anal. 4, 421–442 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Jiao, Z., Chen, Y., Podlubny, I.: Distributed-order dynamic systems. Springer (2012)

  4. Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66, 046129 (2002)

    Article  Google Scholar 

  5. Kochubei, A.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340, 252–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mark, M., Nane, E.: Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl 379, 216–228 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eab, C.H., Lim, S.C.: Fractional Langevin equations of distributed order. Phys. Rev. E 031136, 83 (2011)

    MathSciNet  Google Scholar 

  8. Caputo, M.: ElasticitÁ e Dissipazione. Zanichelli, Bologna (1969)

    Google Scholar 

  9. Hartley, T.T., Lorenzo, C.F.: Fractional system identification: an approach using continuous order-distributions. NASA Technical Memorandum, 1999-209640. NASA Glenn Research Center, Cleveland (1999)

    Google Scholar 

  10. Luchko, Y.: Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12, 409–422 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Ford, N., Morgado, M.: Distributed order equations as boundary value problems. Comput. Math. Appl. 64, 2973–2981 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Atanackovic, T., Pilipovic, S., Zorica, D.: Existence and calculation of the solution to the time distributed order diffusion equation. Phys. Scr. T136, 014012 (2009)

    Article  Google Scholar 

  13. Kazemipour, S., Ansari, A., Neyrameh, A.: Explicit solution of the space-time fractional Klein-Gordon equation of distributed order via the Fox H-functions. Middle East J. Sci. Res 6, 647–656 (2010)

    Google Scholar 

  14. Diethelm, K., Ford, N.J.: Numerical solution methods for distributed order differential equations. Fract. Calc. Appl. Anal. 4, 531–542 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Diethelm, K., Ford, N.J.: Numerical analysis for distributed order differential equations. J. Comp. Appl. Math. 225, 96–104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Katsikadelis, J.T.: Numerical solution of distributed order fractional differential equations. J. Comput. Phys. 259, 11–22 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Podlubny, I., Skovranek, T., Jara, B.M., Petras, I., Verbitsky, V., Chen, Y.Q.: Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders. Phil. Trans. R. Soc. A 371, 20120153 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. Int. J. Appl. Math. 80, 825–838 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Hu, X., Liu, F., Anh, V., Turner, I.: A numerical investigation of the time distributed-order diffusion model. ANZIAM J. 55, C464–C478 (2014)

    Article  MathSciNet  Google Scholar 

  20. Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction-diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gao, G.H., Sun, Z.Z.: Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations. Numer. Methods Partial Differential Eq 32, 591–615 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gao, G.H., Sun, H.W., Sun, Z.Z.: Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 298, 337–359 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations. Comput. Math. Appl. 69, 926–948 (2015)

    Article  MathSciNet  Google Scholar 

  24. Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations. J. Sci. Comput. 66, 1281–1312 (2016)

    Article  MathSciNet  Google Scholar 

  25. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tadjeran, C., Meerschaert, M.M., Scheffler, H.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 84, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liao, H.L., Sun, Z.Z., Shi, H.S.: Error estimate of fourth-order compact scheme for linear Schrödinger equations. SIAM J. Numer. Anal. 47, 4381–4401 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sun, Z.Z.: Numerical methods of partial differential equations (In Chinese), 2nd Edn. Science Press, Beijing (2012)

    Google Scholar 

  31. Gao, G.H., Sun, Z.Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liao, H.L., Sun, Z.Z.: Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Partial Differential Eq 26, 37–60 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun, Z.Z.: The method of order reduction and its application to the numerical solutions of partial differential equations. Science Press, Beijing (2009)

    Google Scholar 

  34. Ansari, A., Moradi, M.: Exact solutions to some models of distributed-order time fractional diffusion equations via the Fox H functions. ScienceAsia 39S, 57–66 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-hua Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Gh., Sun, Zz. Two difference schemes for solving the one-dimensional time distributed-order fractional wave equations. Numer Algor 74, 675–697 (2017). https://doi.org/10.1007/s11075-016-0167-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0167-y

Keywords

Navigation