Numerical Algorithms

, Volume 73, Issue 3, pp 711–733 | Cite as

Multi-step hybrid methods for special second-order differential equations y (t) = f(t,y(t))

  • Jiyong Li
  • Xianfen Wang
Original Paper


In this paper, multi-step hybrid methods for solving special second-order differential equations y (t) = f(t,y(t)) are presented and studied. The new methods inherit the frameworks of RKN methods and linear multi-step methods and include two-step hybrid methods proposed by Coleman (IMA J. Numer. Anal. 23, 197–220, 8) as special cases. The order conditions of the methods were derived by using the SN-series defined on the set SNT of SN-trees. Based on the order conditions, we construct two explicit four-step hybrid methods, which are convergent of order six and seven, respectively. Numerical results show that our new methods are more efficient in comparison with the well-known high quality methods proposed in the scientific literature.


Multi-step hybrid methods Order conditions Simplifying conditions Explicit methods Special second-order differential equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Landau, L.D., Lifshitz, F.M.: Quantum Mechanics. Pergamon Press, New York (1965)MATHGoogle Scholar
  2. 2.
    Liboff, R.L.: Introductory Quantum Mechanics. Addison-Wesley, Reading (1980)MATHGoogle Scholar
  3. 3.
    Hairer, E., Nørsett, S.P., Wanner, G. Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd edn. Springer-Verlag, Berlin (2002)Google Scholar
  4. 4.
    Hairer, E., Lubich, C., Wanner, G. Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer-Verlag, Berlin (2006)Google Scholar
  5. 5.
    Aceto, L., Ghelardoni, P., Magherini, C.: PGSCM: A family of P-stable Boundary Value Methods for second-order initial value problems. J. Comput. Appl. Math. 236, 3857–3868 (2012)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    D’Ambrosio, R., Esposito, E., Paternoster, B.: General linear methods for y = f(y(t)). Numer. Algor. 61, 331–349 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    D’Ambrosio, R., De Martino, G, Paternoster, B.: Order conditions for general linear nystrom methods. Numer. Algor. 65, 579–595 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Coleman, J. P.: Order conditions for a class of two-step methods for y = f(x,y). IMA J. Numer. Anal. 23, 197–220 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Franco, J.M.: A class of explicit two-step hybrid methods for second-order IVPs. J. Comput. Appl. Math. 187, 41–57 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Fang, Y.L., Wu, X.Y.: A trigonometrically fitted explicit Numerov-type method for second-order initial value problems with oscillating solutions. Appl. Numer. Math 58, 341–351 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Van de Vyver, H.: Scheifele two-step methods for perturbed oscillators. J. Comput. Appl. Math. 224, 415–432 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    D’Ambrosio, R., Esposito, E., Paternoster, B.: Exponentially fitted two-step hybrid methods for y = f(x,y). J. Comput. Appl. Math. 236(16), 4888–4897 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Li, J.Y., Wang, B., You, X., Wu, X.Y.: Two-step extended RKN methods for oscillatory systems. Comput. Phys. Comm. 182, 2486–2507 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    You, X., Zhang, Y.H., Zhao, J.X.: Trigonometrically-fitted Scheifele two-step methods for perturbed oscillators. Comput. Phys. Comm. 182, 1481–1490 (2011)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Li, J.Y., Wu, X.Y.: Error analysis of explicit TSERKN methods for highly oscillatory systems. Numer. Algo. 65, 465–483 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numerica 12, 399–450 (2003)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Butcher, J.C.: An algebraic theory of integration methods. Math. Comput. 26, 79–106 (1972)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, Chichester (2008)Google Scholar
  19. 19.
    Hairer, E., Wanner, G.: A theory for Nyström methods. Numer. Math. 25, 383–400 (1976)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Dahlquist, G.: On accuracy and unconditional stability of linear multistep methods for second order differential equations. BIT 18, 133–136 (1978)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Lambert, J.D., Watson, I.A.: Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Appl. 18, 189–202 (1976)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Cano, B., Moreta, M.J.: Multistep cosine methods for second-order partial differential systems. IMA. J. Numer. Anal. 30, 431–461 (2010)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Chawla, M.M., Rao, P.S.: An explicit sixth-order method with phase-lag of order eight for y = f(x,y). J. Comput. Appl. Math. 17, 365–368 (1987)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Tsitouras, Ch: Explicit Numerov type methods with reduced number of stages. Comput. Math. Appl. 45, 37–42 (2003)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Vigo-Aguiar, J., Simos, T. E., Ferrándiz, J.M.: Controlling the error growth in long-term numerical integration of perturbed oscillations in one or more frequencies. Proc. Roy. Soc. London Ser. A 460, 561–567 (2004)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Mathematics and Information ScienceHebei Normal UniversityShijiazhuangChina
  2. 2.Hebei Key Laboratory of Computational Mathematics and ApplicationsShijiazhuangChina

Personalised recommendations