Skip to main content
Log in

Analysis of a meshless method for the time fractional diffusion-wave equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper a numerical technique is proposed for solving the time fractional diffusion-wave equation. We obtain a time discrete scheme based on finite difference formula. Then, we prove that the time discrete scheme is unconditionally stable and convergent using the energy method and the convergence order of the time discrete scheme is \(\mathcal {O}(\tau ^{3-\alpha })\). Firstly, we change the main problem based on Dirichlet boundary condition to a new problem based on Robin boundary condition and then, we consider a semi-discrete scheme with Robin boundary condition and show when \(\beta \rightarrow +\infty \) solution of the main semi-discrete problem with Dirichlet boundary condition is convergent to the solution of the new semi-discrete problem with Robin boundary condition. We consider the new semi-discrete problem with Robin boundary condition and use the meshless Galerkin method to approximate the spatial derivatives. Finally, we obtain an error bound for the new problem. We prove that convergence order of the numerical scheme based on Galekin meshless is \(\mathcal {O}(h)\). In the considered method the appeared integrals are approximated using Gauss Legendre quadrature formula. The main aim of the current paper is to obtain an error estimate for the meshless Galerkin method based on the radial basis functions. Numerical examples confirm the efficiency and accuracy of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional calculus models and numerical methods. Series on complexity, nonlinearity and chaos. World Scientific, Boston (2012)

    Book  MATH  Google Scholar 

  2. Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142–156 (2015)

    Article  MathSciNet  Google Scholar 

  3. Brezis, H.: Functional analysis Sobolev spaces and partial differential equations springer new york dordrecht heidelberg london (2011)

  4. Bagley, R., Torvik, P.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)

    Article  MATH  Google Scholar 

  5. Cai, Z.: Convergence and error estimates for meshless Galerkin methods. Appl. Math. Comput. 184, 908–916 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, C.M., Liu, F., Burrage, K.: Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput. 198, 754–769 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dacorogna, B.: Introduction to the calculus of variations. Imperial College Press, London (2004)

    Book  MATH  Google Scholar 

  9. Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simul. 71, 16–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dehghan, M., Mirzaei, D.: The meshless local Petrov-Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrodinger equation. Eng. Anal. Bound. Elem. 32, 747–756 (2008)

    Article  MATH  Google Scholar 

  11. Dehghan, M., Salehi, R.: The numerical solution of the non-linear integro-differential equations based on the meshless method. J. Comput. Appl. Math. 236, 2367–2377 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dehghan, M., Manafian, J., Saadatmandi, A.: The solution of the linear fractional partial differential equations using the homotopy analysis method. Zeitschrift fur Naturforschung - Section A 65, 935–949 (2010)

    MATH  Google Scholar 

  13. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Du, R., Cao, W.R., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34, 2998–3007 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duan, Y., Tan, Y.J.: Meshless Galerkin method based on regions partitioned into subdomains. Appl. Math. Comput. 162, 317–327 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Applic. 59(3), 1326–1336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Esmaeili, S., Shamsi, M., Luchko, Y.: Numerical solution of fractional differential equations with a collocation method based on Mntz polynomials. Comput. Math. Appl. 62, 918–929 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fasshauer, G. E.: Meshfree approximation methods with MATLAB, USA World Scientific (2007)

  19. Gu, Y.T., Zhuang, P., Liu, Q.: An advanced meshless method for time fractional diffusion equation. Int. J. Comput. Methods (CMES) 8, 653–665 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gu, Y.T., Zhuang, P., Liu, F.: An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation. Comput. Model. Eng. Sci. CMES 56, 303–334 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Franke, C., Schaback, R.: Convergence order estimates of meshless collocation methods using radial basis functions. Adv. Comput. Math. 8, 381–399 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, H., Liu, F., Turner, I., Burrag, K.: Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain. Comput. Math. Appl. 64, 3377–3388 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kansa, E.J.: Multiquadrics A scattered data approximation scheme with applications to computational fluid-dynamics I. Comput. Math. Appl. 19, 127–145 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kansa, E.J.: Multiquadrics A scattered data approximation scheme with applications to computational fluid dynamics - II. Comput. Math. Appl. 19, 147–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kansa, E.J., Aldredge, R.C., Ling, L.: Numerical simulation of two–dimensional combustion using mesh-free methods. Eng. Anal. Bound. Elem. 33, 940–950 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, J., Chen, Y.: Computational partial differential equations using MATLAB. CRC Press, Boca Raton (2008)

    Google Scholar 

  27. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, Q., Gu, Y., Zhuang, P., Liu, F., Nie, Y.: An implicit, RBF meshless approach for time fractional diffusion equations. Comput. Mech. 48, 1–12 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, Q., Liu, F., Turner, I., Anh, V., Gu, Y.T.: A RBF meshless approach for modeling a fractal mobile/immobile transport model. Appl. Math. Comput. 226, 336–347 (2014)

    Article  MathSciNet  Google Scholar 

  30. Li, X.L., Zhu, J.L.: Galerkin boundary node method and its convergence analysis. J. Comput. Appl. Math. 230, 314–328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, X.L.: Meshless Galerkin algorithms for boundary integral equations with moving least square approximations. Appl. Numer. Math. 61, 1237–1256 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161–208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Miller, K.S., Ross, B.: An introductional the fractional calculus and fractional differential equations. Academic Press, New York and London (1974)

    Google Scholar 

  34. Mirzaei, D., Dehghan, M.: A meshless based method for solution of integral equations. Appl. Numer. Math. 60, 245–262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mohebbi, A., Dehghan, M.: The use of compact boundary value method for the solution of two-dimensional Schrödinger equation. J. Comput. Appl. Math. 225, 124–134 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J Comput. Phy. 240, 36–48 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Murillo, J.Q., Yuste, S.B.: An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form. J. Comput. Nonl. Dynam. 6, 021–014 (2011)

    Google Scholar 

  38. Momani, S., Odibat, Z.M.: Fractional green function for linear time-fractional inhomogeneous partial differential equations in fluid mechanics. J. Appl. Math. Comput. 24, 167–178 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Odibat, Z.M.: Computational algorithms for computing the fractional derivatives of functions. Math. Comput. Simul. 79, 2013–2020 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Oldham, K.B., Spanier, J.: The fractional calculus: Theory and application of differentiation and integration to arbitrary order academic press (1974)

  41. Oldham, K.B., Spanier, J.: The fractional calculus. Academic Press, New York and London (1974)

    MATH  Google Scholar 

  42. Podulbny, I.: Fractional differential equations. Academic Press, New York (1999)

    Google Scholar 

  43. Quarteroni, A., Valli, A.: Numerical approximation of partial differential equations. Springer-Verlag, New York (1997)

    MATH  Google Scholar 

  44. Shokri, A., Dehghan, M.: Meshless method using radial basis functions for the numerical solution of two–dimensional complex Ginzburg-Landau equation. Comput. Model. Eng. Sci. CMES 34, 333–358 (2012)

    MathSciNet  Google Scholar 

  45. Shokri, A., Dehghan, M.: A Not-a-Knot meshless method using radial basis functions and predictor-corrector scheme to the numerical solution of improved Boussinesq equation. Comput. Phys. Commun. 181, 1990–2000 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wendland, H.: Scattered Data Approximation. In: Cambridge Monograph on Applied and Computational Mathematics, Cambridge University Press (2005)

  49. Wendland, H.: Meshless Galerkin methods using radial basis functions. Math. Comput. 68, 1521–1531 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wendland, H.: Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J. Approx. Theory 93, 258–272 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wess, W.: The fractional diffusion equation. J. Math. Phys. 27, 2782–2785 (1996)

    Article  MathSciNet  Google Scholar 

  52. Wu, Z., Shaback, R.: Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 13, 13–27 (1993)

    Article  MathSciNet  Google Scholar 

  53. Yang, J.Y., Zhao, Y.M., Liu, N., Bu, W.P., Xu, T.L., Tang, Y.F., An implicit, M L S: Meshless method for 2D time dependent fractional diffusion-wave equation. Appl. Math. Model. 39, 1229–1240 (2015)

    Article  MathSciNet  Google Scholar 

  54. Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264–274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yuste, S.B., Acedo, L.: An, explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42(5), 1862–1874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhao, X., Sun, Z.Z.: Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62, 1–25 (2014)

    MathSciNet  Google Scholar 

  57. Zhao, X., Sun, Z.Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: Algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, M., Abbaszadeh, M. & Mohebbi, A. Analysis of a meshless method for the time fractional diffusion-wave equation. Numer Algor 73, 445–476 (2016). https://doi.org/10.1007/s11075-016-0103-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0103-1

Keywords

Mathematics Subject Classification (2010)

Navigation