Advertisement

Numerical Algorithms

, Volume 70, Issue 4, pp 835–845 | Cite as

On the construction of some tri-parametric iterative methods with memory

  • Taher Lotfi
  • Fazlollah Soleymani
  • Mohammad Ghorbanzadeh
  • Paria Assari
Original Paper

Abstract

In this work, two-step methods with memory by applying three self-accelerator parameters are proposed and analyzed. In fact, we hit the high bound \(7.77200^{\frac {1}{3}}\approx 1.98082\) as the efficiency index. Theoretical results are then supported by numerical examples.

Keywords

Tri-parametric Self-accelerator R-order With memory 

Mathematics Subject Classification (2010)

65H05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cordero, A., Lotfi, T., Mahdiani, K., Torregrosa, J.R.: A stable family with high order of convergence for solving nonlinear equations. Appl. Math. Comput. 254, 240–251 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Džunić, J., Petković, M.S., Petković, L.D.: Three-point methods with without memory for solving nonlinear equations. Appl. Math. Comput. 218, 4917–4927 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Džunić, J.: On efficient two-parameter methods for solving nonlinear equations. Numer. Algor. 63, 549–569 (2013)CrossRefMATHGoogle Scholar
  4. 4.
    Geum, Y.H., Kim, Y.I.: A biparametric family of optimally convergent sixteenth-order multipoint methods with their fourth-step weighting function as a sum of a rational and a generic two-variable function. J. Comput. Appl. Math. 235, 3178–3188 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Geum, Y.H., Kim, Y.I.: A family of optimal sixteenth-order multipoint methods with a linear fraction plus a trivariate polynomial as the fourth-step weighting function. Comput. Math. Appl. 61, 3278–3287 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Grau-Sánchez, M., Noguera, M., Grau, Ȧ., Herrero, J.R.: On new computational local orders of convergence. Appl. Math. Lett. 25, 2023–2030 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Iliev, A., Kyurkchiev, N.: Nontrivial methods in numerical analysis: selected topics in numerical analysis. LAP LAMBERT Acad. Pub., Saarbrcken (2010)Google Scholar
  8. 8.
    Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Math. 21, 634–651 (1974)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lotfi, T., Shateyi, S., Hadadi, S.: Potra-Pták iterative method with memory. ISRN Math. Anal. Vol. 2014, Article ID 697642, 6 pagesGoogle Scholar
  10. 10.
    Lotfi, T., Magreñán, Á.A., Mahdiani, K., Javier Rainer, J.: A variant of Steffensen-King’s type family with accelerated sixth-order convergence and high efficiency index: Dynamic study and approach. Math. Comput. Appl. 252, 347–353 (2015)CrossRefGoogle Scholar
  11. 11.
    Petković, M.S., Neta, B., Petković, L.D., Džunić, J.: Multipoint methods for solving nonlinear equations: A survey. Appl. Math. Comput. 226, 635–660 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sharma, J.R., Guha, R.K., Gupta, P.: Some efficient derivative free methods with memory for solving nonlinear equations. Appl. Math. Comput. 219, 699–707 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Soleymani, F., Babajee, D.K.R., Shateyi, S., Mosta, S.S.: Construction of optimal derivative-free techniques without memory. J. Appl. Math. Volume 2012, Article ID 497023, 24 pagesGoogle Scholar
  14. 14.
    Soleymani, F., Sharifi, M., Shateyi, S., Haghani, F.K.: A class of Steffensen-type iterative methods for nonlinear systems, J. Appl. Math., Volume 2014, Article ID 705375, 9 pages.Google Scholar
  15. 15.
    Soleymani, F., Lotfi, T., Tavakoli, E., Khaksar Haghani, F.: Several iterative methods with memory using self-accelerators. Appl. Math. Comput. 254, 452–458 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Steffensen, J.F.: Remarks on iteration. Skand. Aktuarietidskr 16, 64–72 (1933)Google Scholar
  17. 17.
    Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, New York (1964)MATHGoogle Scholar
  18. 18.
    Wang, X., Zhang, T.: High-order Newton-type iterative methods with memory for solving nonlinear equations. Math. Commun. 19, 91–109 (2014)MathSciNetMATHGoogle Scholar
  19. 19.
    Zheng, Q., Li, J., Huang, F.: Optimal Steffensen-type families for solving nonlinear equations. Appl. Math. Comput. 217, 9592–9597 (2011)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Taher Lotfi
    • 1
  • Fazlollah Soleymani
    • 1
  • Mohammad Ghorbanzadeh
    • 2
  • Paria Assari
    • 1
  1. 1.Department of Mathematics, Hamedan BranchIslamic Azad UniversityHamedanIran
  2. 2.Department of MathematicsImam Reza International UniversityMashhadIran

Personalised recommendations