Numerical Algorithms

, Volume 70, Issue 3, pp 669–690 | Cite as

A finite difference method for an inverse Sturm-Liouville problem in impedance form

Original Paper


In this paper, the inverse Sturm-Liouville problem for a symmetric impedance is considered and a new iterative method is proposed. Based on the discretization of the Sturm-Liouville operator by a finite difference method, the inverse Sturm-Liouville problem for a symmetric impedance is approximated by a related matrix inverse eigenvalue problem. In solving the matrix inverse eigenvalue problem, the correction technique is discussed to obtain eigenvalues which are close to the finite difference eigenvalues. Then an approximation to the impedance function is achieved by solving the nonlinear equations with modified Newton’s method. Convergence of the method is established and the effectiveness is shown by the numerical experiments.


Sturm-Liouville operator Finite difference method Generalized inverse eigenvalue problem Correction Modified Newton’s method 

Mathematics Subject Classification (2010)

34L16 65F05 65F15 65F18 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aceto, L., Ghelardoni, P., Magherini, C.: Boundary value methods for the reconstruction of Sturm-Liouville potentials. Appl. Math. Comput. 219, 2960–2974 (2012)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Albeverio, S., Hryniv, R., Mykytyuk, Ya.: Inverse spectral problems for Sturm-Liouville operators in impedance form. J. Funct. Anal. 222, 143–177 (2005)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Andersson, L.E.: Inverse eigenvalue problems for a Sturm-Liouville equation in impedance form. Inverse Probl. 4, 929–971 (1988)MATHCrossRefGoogle Scholar
  4. 4.
    Andersson, L.E.: Inverse eigenvalue problems with discontinuous coefficients. Inverse Probl. 4, 353–397 (1988)MATHCrossRefGoogle Scholar
  5. 5.
    Andersson, L.E.: Algorithms for solving inverse eigenvalue problems for Sturm-Liouville equations. In: Sabatier, P.C. (ed.) Inverse Problems in Action. Springer-Verlag, Berlin (1990)Google Scholar
  6. 6.
    Andrew, A.L.: Asymptotic correction of Numerov’s eigenvalue estimates with natural boundary conditions. J. Comput. Appl. Math. 125, 359–366 (2000)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Andrew, A.L.: Asymptotic correction of more Sturm-Liouville eigenvalue estimates. BIT Numer. Math. 43, 485–503 (2003)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Andrew, A.L.: Numerov’s method for inverse Sturm-Liouville problem. Inverse Probl. 21, 223–238 (2005)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Andrew, A.L.: Computing Sturm-Liouville potentials from two spectra. Inverse Probl. 22, 2069–2081 (2006)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Andrew, A.L., Paine, J.W.: Correction of Numerov’s eigenvalue estimates. Numer. Math. 47, 289–300 (1985)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Boley, D., Golub, G.H.: A survey of matrix inverse eigenvalue problems. Inverse Probl. 3, 595–622 (1987)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Borcea, L., Druskin, V., Guevara Vasquez, F., Mamonov, A.V.: Resistor network approaches to electrical impedance tomography, arXiv:1107.0343
  13. 13.
    Borcea, L., Druskin, V., Knizhnerman, L.: On the continuum limit of a discrete inverse spectral problem on optimal finite difference grids. Commun. Pure Appl. Math. 58, 1231–1279 (2005)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Chu, M.T.: Inverse eigenvalue problems. SIAM Rev. 40, 1–39 (1998)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Coleman, C.F.: An inverse spectral problem with rough coefficient, Thesis Rensselaer Polytechnic Institute (1989)Google Scholar
  16. 16.
    Coleman, C.F., McLaughlin, J.R.: Solution of the inverse spectral problem for an impedance with integrable derivative part I. Commun. Pure Appl. Math. 46, 145–184 (1993)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Coleman, C.F., McLaughlin, J.R.: Solution of the inverse spectral problem for an impedance with integrable derivative part II. Commun. Pure Appl. Math. 46, 185–212 (1993)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Gao, Q.: Descent flow methods for inverse Sturm-Liouville problem. Appl. Math. Modell. 36, 4452–4465 (2012)MATHCrossRefGoogle Scholar
  19. 19.
    Ghelardoni, P., Magherini, C.: BVMs for computing Sturm-Liouville symmetric potentials. Appl. Math. Comput. 217, 3032–3045 (2010)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Gladwell, G.M.L.: Inverse Problem in Vibration (Dordrecht: Martinus Nijhoff) (1986)Google Scholar
  21. 21.
    Gladwell, G.M.L.: The application of Schur’s algorithm to an inverse eigenvalue problem. Inverse Probl. 7, 557–565 (1991)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Knobel, R., Lowe, B.D.: An inverse Sturm-Liouville problem for an impedance. Z. Angew. Math. Phys. 44, 433–450 (1993)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Marti, J.T.: Small potential corrections for the discrete eigenvalues of the Sturm-Liouville problem. Numer. Math. 57, 51–62 (1990)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    McLaughlin, J.R.: Stability theorems for two inverse spectral problems. Inverse Probl. 4, 529–540 (1988)MATHCrossRefGoogle Scholar
  25. 25.
    Natterer, F.: A Lanczos type algorithm for inverse Sturm-Liouville problems. Proc. CMA Aust. Nat. Univ. 31, 82–88 (1992)MathSciNetGoogle Scholar
  26. 26.
    Neher, M.: Enclosing Solutions of an inverse Sturm-Liouville problem for an impedance. J. Univ. Comput. Sci. 4, 178–192 (1998)MATHMathSciNetGoogle Scholar
  27. 27.
    Paine, J.: A numerical method for the inverse Sturm-Liouville problem. SIAM J. Sci. Stat. Comput. 5, 149–156 (1984)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Paine, J.W., De Hoog, F.R., Anderssen, R.S.: On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems. Computing 26, 123–139 (1981)MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Parlett, B.N.: The symmetric eigenvalue problem (Philadelphia: Society for Industrial and Applied Mathematics) (1998)Google Scholar
  30. 30.
    Pruess, S., Fulton, C.: Mathematical software for Sturm-Liouville problems. ACM Trans. Math. Softw. 19, 360–C376 (1993)MATHCrossRefGoogle Scholar
  31. 31.
    Rundell, W., Sacks, P.E.: The reconstruction of Sturm-Liouville operators. Inverse Probl. 8, 457–482 (1992)MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Sun, J.G.: Multiple eigenvalue sensitivity analysis. Linear Algebra Appl. 137/138, 183–211 (1990)CrossRefGoogle Scholar
  33. 33.
    Wu, Q., Fricke, F.: Determination of blocking locations and cross-sectional area in a duct by eigenfrequency shifts. J. Acoust. 87, 67–75 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsHubei University of EducationWuhanChina
  2. 2.Department of MathematicsZhejiang UniversityHangzhouChina

Personalised recommendations