Advertisement

Numerical Algorithms

, Volume 71, Issue 4, pp 797–809 | Cite as

Global solutions of the biconfluent Heun equation

  • E. M. Ferreira
  • J. Sesma
Original Paper

Abstract

An algorithm is proposed for obtaining global solutions of the biconfluent Heun equation, which appears when dealing with a variety of physical problems. The procedure, which provides algebraic expressions of the solutions in the form of convergent series or asymptotic expansions, lies on the determination of the connection factors relating the solutions about the regular singular point at the origin and the irregular one at infinity. The algorithm is illustrated by examples.

Keywords

Differential equations Biconfluent Heun equation Connection factors Eigenvalues 

Mathematics Subject Classification (2010)

34B30 33E20 34M40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abad, J., Gómez, F.J., Sesma, J.: An algorithm to obtain global solutions of the double confluent Heun equation. Numer. Algor. 49, 33–51 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Boyd, J.P., Natarov, A.: A Sturm-Liouville eigenproblem of the fourth kind: A critical latitude with equatorial trapping. Stud. Appl. Math. 101, 433–455 (1998)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Caruso, F., Martins, J., Oguri, V.: Solving a two-electron quantum dot model in terms of polynomial solutions of a biconfluent Heun equation. Ann. Phys. 347, 130–140 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dariescu, M.A., Dariescu, C., Cretu, C., Buhucianu, O.: Analytic study of fermions in graphene; Heun functions and beyond. Rom. Journ. Phys. 58, 703–712 (2013)Google Scholar
  5. 5.
    Dariescu, M.A., Dariescu, C.: Polynomial solutions of Heun equation describing fermions in graphene. Int. J. Mod. Phys. B 27, 1350190 (10 pp) (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gómez, F.J., Sesma, J.: Connection factors in the Schrödinger equation with a polynomial potential. J. Comput. Appl. Math. 207, 291–300 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Hardy, G.H.: Divergent Series. Oxford University Press, London (1956)MATHGoogle Scholar
  8. 8.
    Heun, K.: Zur Theorie der Riemann’schen Functionen zweiter Ordnung mit vier Verzweigungspunkten. Math. Annalen 33, 161–179 (1888)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hortaçsu, M.: Heun functions and their uses in Physics. In: Camci, U., Semiz, I. (eds.) Proceedings of the 13th regional conference on mathematical physics, Antalya, Turkey. arXiv:1101.0471[math-ph], pp 23–39. World Scientific, Singapore (2013)
  10. 10.
    Kandemir, B.S.: Two interaction electrons in a uniform magnetic field and a parabolic potential: The general closed-form solution. J. Math. Phys. 46, 032110 (7 pp) (2005)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Karwowski, J., Witek, H.A.: Biconfluent Heun equation in quantum chemistry: Harmonium and related systems. Theor. Chem. Acc. 133, 1494 (11 pp) (2014)CrossRefGoogle Scholar
  12. 12.
    Maroni, P.: Biconfluent Heun equation. In: Ronveaux, A (ed.) , pp 189–249. Oxford University Press, Oxford (1995)Google Scholar
  13. 13.
    Molinet, F.A.: Plane wave diffraction by a strongly elongated object illuminated in the paraxial direction. Progress Electromagn. Res. B 6, 135–151 (2008)CrossRefGoogle Scholar
  14. 14.
    Naundorf, F.: A connection problem for second order linear differential equations with two irregular singular points. SIAM J. Math. Anal. 7, 157–175 (1976)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ronveaux, A. (ed.): Heun’s differential equations. Oxford University Press, Oxford (1995)Google Scholar
  16. 16.
    Slavyanov, S.Y., Lay, W.: Special functions: a unified theory based on singularities . Oxford University Press, Oxford (2000)MATHGoogle Scholar
  17. 17.
    Vieira, H.S., Bezerra, V.B.: Quantum Newtonian cosmology and the biconfluent Heun functions. arXiv:1502.03071[gr-qc]

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrasil
  2. 2.Departamento de Física TeóricaFacultad de CienciasZaragozaSpain

Personalised recommendations