Numerical Algorithms

, Volume 69, Issue 2, pp 443–453 | Cite as

Always convergent iteration methods for nonlinear equations of Lipschitz functions

Original Paper


We define a class of always convergent methods for solving nonlinear equations of real Lipschitz functions. These methods generate monotone iterations that either converge to the nearest zero, if exists or leave the interval in a finite number of steps. We also investigate the speed and relative speed of these methods and show that no optimal method exists in the class. After deriving special cases we report on numerical testing that show the feasibility of these methods.


Monotone convergence Lipschitz functions Convergence speed 

Mathematics Subject Classifications (2010)

65H05 65H20 47H10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abaffy, J., Forgó, F.: Globally convergent algorithm for solving nonlinear equations. J. Optim. Theory App. 77, 291–304 (1993)CrossRefMATHGoogle Scholar
  2. 2.
    Abaffy, J., Galántai, A.: A new method for minimization of real Lipschitz functions. In: IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI). doi: 10.1109/SACI.2013.6608945 (2013)
  3. 3.
    Abaffy, J., Galántai, A.: An always convergent algorithm for global minimization of univariate Lipschitz functions. Acta Polytech. Hung. 10, 21–39 (2013)Google Scholar
  4. 4.
    Alefeld, G.E., Potra, F.A.: Some efficient methods for enclosing simple zeros of nonlinear equations. BIT 32, 334–344 (1992)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Alefeld, G.E., Potra, F.A., Shi, Y.: On enclosing simple roots of nonlinear equations. Math. Comput. 61, 733–744 (1993)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Alefeld, G.E., Potra, F.A., Shi, Y.: Algorithm 748: Enclosing zeros of continuous functions. ACM Trans. Math. Softw. 21, 327–344 (1995)CrossRefGoogle Scholar
  7. 7.
    Bus, J.C.P., Dekker, T.J.: Two efficient algorithms with guaranteed convergence for finding a zero of a function. ACM Trans. Math. Softw. 1, 330–345 (1975)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Carothers, N.L.: Real Analysis. Cambridge University Press (2000)Google Scholar
  9. 9.
    Delahaye, J.-P.: Sequence Transformations. Springer (1988)Google Scholar
  10. 10.
    Galántai, A., Hegedűs, C.J.: A study of accelerated Newton methods for multiple polynomial roots. Numer. Algor. 54, 219–243 (2010)CrossRefMATHGoogle Scholar
  11. 11.
    Kuczma, M.: Functional Equations in a Single Variable. PWN - Polish Scientific Publishers, Warsaw (1968)MATHGoogle Scholar
  12. 12.
    Kuczma, M., Choczewski, B., Ger, R.: Iterative Functional Equations. Cambridge University Press (1990)Google Scholar
  13. 13.
    Kvasov, D.E., Sergeyev, Ya.D.: Univariate geometric Lipschitz global optimization algorithms. Numer. Algebra, Control and Optim 2, 69–90 (2012)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Le, D.: An efficient derivative-free method for solving nonlinear equations. ACM Trans. Math. Softw. 11, 250–262 (1985)CrossRefMATHGoogle Scholar
  15. 15.
    Molinaro, A., Sergeyev, Y.D.: Finding the minimal root of an equation with the multiextremal and nondifferentiable left-part. Numer. Algor. 28, 255–272 (2001)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Natanson, I.P.: Theory of Functions of a Real Variable, Vol. I. Frederick Ungar Publishing Co, New York (1964)Google Scholar
  17. 17.
    Pietrus, A.: A globally convergent method for solving nonlinear equations without the differentiability condition. Numer. Algor. 13, 60–76 (1996)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Rice, J.E.: Numerical Methods, Software, and Analysis. McGraw-Hill (1983)Google Scholar
  19. 19.
    Riesz, F., Sz.-Nagy Béla.: Functional Analysis. Blackie & Son Limited, London and Glasgow (1956)Google Scholar
  20. 20.
    Schmidt, J.W.: Eingrenzung von Lösungen nichtlinearer Gleichungen durch Verfahren mit höherer Konvergenzgeschwindigkeit. Computing 8, 208–215 (1971)CrossRefMATHGoogle Scholar
  21. 21.
    Sikorski, K.: Optimal Solution of Nonlinear Equations. Oxford University Press (2001)Google Scholar
  22. 22.
    Sukharev, A.G.: Optimal search of a root of a function that satisfies a Lipschitz condition. Zh. Vychisl. Mat. Mat. Fiz 16, 20–29 (1976). in RussianMATHGoogle Scholar
  23. 23.
    Sukharev, A.G.: Minimax Algorithms in Problems of Numerical Analysis. Nauka, Moscow (1989). in RussianMATHGoogle Scholar
  24. 24.
    Szabó, Z.: Über gleichungslösende Iterationen ohne Divergenzpunkt I-III. Publ. Math-Debrecen 20, 222–233 (1973)Google Scholar
  25. 25.
    Szabó, Z.: Über gleichungslösende Iterationen ohne Divergenzpunkt I-III. Publ. Math-Debrecen 21, 285–293 (1974)MATHMathSciNetGoogle Scholar
  26. 26.
    Szabó, Z.: Über gleichungslösende Iterationen ohne Divergenzpunkt I-III. Publ. Math-Debrecen 27, 185–200 (1980)MATHMathSciNetGoogle Scholar
  27. 27.
    Szabó, Z.: Ein Erveiterungsversuch des divergenzpunkfreien Verfahrens der Berührungsprabeln zur Lösung nichtlinearer Gleichungen in normierten Vektorverbänden, Rostock. Math. Kolloq 22, 89–107 (1983)MATHGoogle Scholar
  28. 28.
    Targonski, G.: Topics in Iteration Theory. Vandenhoeck & Ruprecht, Göttingen (1981)MATHGoogle Scholar
  29. 29.
    Várterész, M.: Always convergent iterations for the solution of nonlinear equations. PhD Thesis. Kossuth University, Debrecen (1998). in HungarianGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Óbuda UniversityBudapestHungary

Personalised recommendations