Advertisement

Numerical Algorithms

, Volume 68, Issue 4, pp 867–901 | Cite as

Design of a discrete algebraic robust differentiation FIR filter using an annihilator of the Z-transform; frequency response analysis and parameter tuning

  • Fabien Courreges
Original Paper

Abstract

The seminal work of Mboup et al. [1] has opened a new approach of robust differentiator design based upon the concept of annihilator of the Laplace transform of a continuous input signal. Our work is an investigation of the derivation and analysis of a new discrete FIR estimator designed using this same concept. We have specifically considered a discrete input signal and derived an annihilator of its Z-transform. The resulting new estimator expression shows to be very simple to implement as two cascaded stages: 1. Signal smoothing with a low-pass filter; 2. Euler finite differentiation. We could also derive fast algorithms for the parameters tuning in case of ripple noise. Our experimental results show the ease of parameter tuning and efficacy of the estimator.

Keywords

Robust discrete algebraic differentiator Annihilator of the signal’s Z-transform FIR digital differentiator Parameter tuning. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mboup, M., Join, C., Fliess, M.: A revised look at numerical differentiation with an application to nonlinear feedback control, 15th Mediterranean Conference on Control and Automation (MED’07), Athens, Greece (2007)Google Scholar
  2. 2.
    Fliess, M., Join, C.: Model free control and Intelligent PID controllers: Towards a possible trivialization of nonlinear control? 15th IFAC Symposium on system identification (2009)Google Scholar
  3. 3.
    Fedele, G., Chiaravalloti, F., Join, C.: An algebraic derivative-based approach for the zerocrossings estimation, 17th Europ. Signal Processing Conf., Glasgow (2009)Google Scholar
  4. 4.
    Fliess, M., Join, C.: Towards new technical indicators for trading systems and risk management, 15th IFAC Symp. on System Identif., Saint-Malo (2009)Google Scholar
  5. 5.
    Mboup, M., Join, C., Fliess, M.: Numerical differentiation with annihilators in noisy environment. Numer. Algoritm. 50(4), 439–467 (2009)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Reddy, M.R.R., Kumar, B., Dutta Roy, S.C.: Design of efficient second and higher order FIR digital differentiators for low frequencies. Signal Process. 20(3), 219–225 (1990)CrossRefGoogle Scholar
  7. 7.
    Mollova, G.: Compact formulas for least-squares design of digital differentiators. Electron. Lett. 35(20), 1695–1697 (1999)CrossRefGoogle Scholar
  8. 8.
    Koppinen, K.: Design, analysis and generalization of polynomial predictive filters. Dr.Tech. dissertation, Tampere University of Technology Publications 431, Tampere, Finland (2003)Google Scholar
  9. 9.
    Samadi, S., Nishihara, A.: Explicit formula for predictive FIR filters and differentiators using Hahn polynomials. IEICE Trans. E90-A(8), 1511–1518 (2007)CrossRefGoogle Scholar
  10. 10.
    Reger, J., Jouffroy, J.: On algebraic time-derivative estimation and deadbeat state reconstruction, 48th IEEE Conference on Decision and Control, Shanghai, China (2009)Google Scholar
  11. 11.
    Garća Collado, F.A., d’Andréa-Novel, B., Fliess, M., Mounier, H.: Analyse fréquentielle des dérivateurs algébriques, XXIIe Coll. GRETSI, Dijon, France (2009)Google Scholar
  12. 12.
    Apostol, T.: Calculus, §7.5, Wiley. ISBN 0-471-00005-1 (1967)Google Scholar
  13. 13.
    Smith, D.: Further comments on “On the evaluation of \(\sum _{n=0}^{\infty }r^{k}x^{r}\) with applications to Z transforms”. IEEE Trans. Autom. Control 22, 993 (1977)MATHCrossRefGoogle Scholar
  14. 14.
    Gauthier, N.: Derivation of a formula for \(\sum r^{k}x^{r}\). Fibonacci Quart. 27, 402–408 (1989)MATHMathSciNetGoogle Scholar
  15. 15.
    Knuth, D.E.: Two notes on notation. Am. Math. Mon. 99, 403–422 (1992)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete mathematics, 2nd edn. Addison- Wesley Publ. Company, Reading, Massachusetts (1994). ISBN 0-201-55802-5Google Scholar
  17. 17.
    Gould, H.W., Combinatorial numbers and associated identities: Table 1: Stirling Numbers, from the seven unpublished manuscripts of H.W. Gould Edited and Compiled by Jocelyn Quaintance, 3 May 2010Google Scholar
  18. 18.
    Lanczos, C.: Applied Analysis. Prentice-Hall, Englewood Cliffs (1956)Google Scholar
  19. 19.
    Fliess, M.: Analyse non standard du bruit. Comptes-Rendus de l’Académie des Sciences, Série 1, Mathématiques 342, pp.797–802, 15 mai (2006)Google Scholar
  20. 20.
    Nyblom, M.: Iterated sums of arithmetic progressions. Gaz. Aust. Math. Soc. 34(5), 283–287 (2007)MathSciNetGoogle Scholar
  21. 21.
    Rennie, B.C, Dobson, A.J: On Stirling numbers of the second kind. J. Comb. Theor. 7, 116–121 (1969)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Zehetner, J., Reger, J., Horn, M.: A derivative estimation toolbox based on algebraic methods–theory and practice. IEEE Trans. Ind. Electron. 45, 364–366 (2007)Google Scholar
  23. 23.
    Valiviita, S., Ovaska, S.J.: Delayless acceleration measurement method for elevator control. IEEE Trans. Ind. Electron. 45, 364–366 (1998)CrossRefGoogle Scholar
  24. 24.
    Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964)CrossRefGoogle Scholar
  25. 25.
    Programs for Digital Signal Processing. IEEE Press, New York (1979). Algorithm 5.2Google Scholar
  26. 26.
    Hyndman, R.J.: Another look at forecast-accuracy metrics for intermittent demand. In: Foresight. Int. J. Appl. Forecast. 4, 43-46 (2006Google Scholar
  27. 27.
    Fliess, M., Join, C., Sira-Ramirez, H.: Non-linear estimation is easy. Int. J. Modell. Identif. Control. 4(1), 12–27 (2008)Google Scholar
  28. 28.
    Villagra, J., Balaguer, C.: Robust motion control for humanoid robot flexible joints. Control & Automation (MED), 18th Mediterranean Conference on 2010, pp. 963–968, 23–25 June 2010Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Xlim Institute, Mechatronics teamUniversity of LimogesLimogesFrance

Personalised recommendations