Numerical Algorithms

, Volume 65, Issue 3, pp 533–554 | Cite as

The efficiency of Singly-implicit Runge-Kutta methods for stiff differential equations

Original Paper


Singly-implicit Runge-Kutta methods are considered to be good candidates for stiff problems because of their good stability and high accuracy. The existing methods, SIRK (Singly-implicit Runge-Kutta), DESI (Diagonally Extendable Singly-implicit Runge-Kutta), ESIRK (Effective order Singly-implicit Rung-Kutta) and DESIRE (Diagonally Extended Singly-implicit Runge-Kutta Effective order) methods have been shown to be efficient for stiff differential equations, especially for high dimensional stiff problems. In this paper, we measure the efficiency for the family of singly-implicit Runge-Kutta methods using the local truncation error produced within one single step and the count of number of operations. Verification of the error and the computational costs for these methods using variable stepsize scheme are presented. We show how the numerical results are effected by the designed factors: additional diagonal-implicit stages and effective order.


Singly-implicit Runge-Kutta methods Diagonally-implicit stages Effective order 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, R.: Diagonally implicit Runge-Kutta methods for stiff ODEs. SIAM J. Numer. Anal. 14, 1006–1021 (1977)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Burrage, K.: A special family of Runge-Kutta methods for solving stiff differential equations. BIT 18, 22–41 (1978)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Burrage, K., Butcher, J.C., Chipman, F.H.: STRIDE: Stable Runge-Kutta integrator for differential equations. Computational Mathematics Report No. 20. University of Auckland (1979)Google Scholar
  4. 4.
    Butcher, J.C.: The effective order of Runge-Kutta methods, conference on the numerical solution of differential equations. Lect. Notes Math. 109, 133–139 (1969)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Butcher, J.C.: On the implementation of implicit Runge-Kutta methods. BIT 16, 237–240 (1976)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Butcher, J.C.: The numerical analysis of ordinary differential equations. Wiley (2008)Google Scholar
  7. 7.
    Butcher, J.C., Cash, J.: Towards efficient Runge-Kutta methods for stiff systems. SIAM J. Numer. Anal. 27, 753–761 (1990)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Butcher, J.C., Chartier, P.: A generalization of Singly-Implicit Runge-Kutta methods. Appl. Numer. Math. 24, 343–350 (1997)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Butcher, J.C., Chartier, P.: The Effective Order of Singly-Implicit Runge-Kutta methods. Numer. Algo. 20, 269–284 (1999)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Butcher, J.C., Chen, D.J.L.: ESIRK methods and variable stepsize. Appl. Numer. Math. 28, 193–207 (1998)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Butcher, J.C., Chen, D.J.L.: On the implementation of ESIRK methods for stiff IVPs. Numer. Algo. 26, 201–218 (2001)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Chen, D.J.L.: The effective order of singly-implicit methods for stiff differential equations. PhD thesis, The University of Auckland, New Zealand (1998)Google Scholar
  13. 13.
    Butcher, J.C., Diamantakis, M.T.: DESIRE: diagonally extended singly implicit Runge-Kutta effective order methods. Numer. Algo. 17, 121–145 (1998)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Diamantakis, M.T.: Diagonally extended singly implicit Runge-Kutta methods for stiff initial value problems. PhD thesis, Imperial College, University of London (1995)Google Scholar
  15. 15.
    Hairer, E., Wanner, G.: Solving ordinary differential equations II, stiff and differential-algebraic problems. Springer-Verlag, Berlin (1987)CrossRefGoogle Scholar
  16. 16.
    Kaps, P.: The Rosenbrock-type methods. In: Dalhquist, G., Jeltsch, R. (eds.) Numerical methods for stiff initial value problems (Proceeding, Oberwolfach). Bericht Nr. 9, Institut fur Geometrie und Praktische Mathematik, RWTH Aachen, Germany (1981)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Information TechnologyLing Tung UniversityTaichungTaiwan

Personalised recommendations