Skip to main content
Log in

An approximate eigensolver for self-consistent field calculations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we give a comprehensive error analysis for an approximate solution method for the generalized eigenvalue problems arising for instance in the context of electronic structure computations based on density functional theory. The solution method has been demonstrated to excel as compared to established solvers in both computational effort and scaling for parallelization. Here we estimate the improvement provided by our proposed subspace method starting from the initial approximations for instance provided in the course of the self-consistent field iteration, showing that in general the approximation quality is improved by our method to yield sufficiently accurate eigenvalues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bendtsen, C., Nielsen, O., Hansen, L.: Solving large nonlinear generalized eigenvalue problems from density functional theory calculations in parallel. Appl. Numer. Math. 37, 189–199 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blaha, P., Hofstätter, H., Koch, O., Laskowsky, R., Schwarz, K.: Iterative diagonalization in APW based methods in electronic structure calculations. J. Comput. Phys. 229, 453–460 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blaha, P., Schwarz, K., Madsen, G.: Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147, 71–76 (2002)

    Article  MATH  Google Scholar 

  4. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: An augmented plane wave plus local orbital program for calculating crystal properties.  ISBN 3-9501031-1-2 (2001)

  5. Crouzeix, M., Philippe, B., Sadkane, M.: The Davidson method. SIAM J. Sci. Comput. 15, 62–76 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Davidson, E.: The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17, 87–94 (1975)

    Article  MATH  Google Scholar 

  7. Garcia-Cervera, C.J., Lu, J., Xuan, Y., Weinan, E.: Linear-scaling subspace-iteration algorithm with optimally localized nonorthogonal wave functions for Kohn-Sham density functional theory. Phys. Rev. B  79, 115110 (2009)

    Article  Google Scholar 

  8. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)

    Article  MathSciNet  Google Scholar 

  9. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (1990)

  10. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    Article  MathSciNet  Google Scholar 

  11. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    Article  Google Scholar 

  12. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  Google Scholar 

  13. Kresse, G., Furthmüller, J.: VASP the GUIDE (2007). Available at http://cms.mpi.univie.ac.at/VASP

  14. Lascoux, A., Pragacz, P.: Jacobians of symmetric polynomials. Ann. Comb. 6, 169–172 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Laskowski, R., Blaha, P.: Unraveling the structure of the h-BN/Rh(111) nanomesh with ab initio calculations. J. Phys. Condens. Matter 20, 064207 (2008)

    Article  Google Scholar 

  16. Madsen, G.K.H., Blaha, P., Schwarz, K., Sjöstedt, E., Nordström, L.: Efficient linearization of the augmented plane-wave method. Phys. Rev. B 64, 195134 (2001)

    Article  Google Scholar 

  17. Pulay, P.: Convergence acceleration of iterative sequences. The case of SCF iteration. Chem. Phys. Lett. 73, 393 (1980)

    Article  Google Scholar 

  18. Rayson, M.J., Briddon, P.R.: Rapid iterative method for electronic-structure eigenproblems using localized basis functions. Comput. Phys. Commun. 178, 128–134 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schwarz, K.: DFT calculations of solids with LAPW and WIEN2k. Solid State Commun. 176, 319–328 (2003)

    Article  Google Scholar 

  20. Schwarz, K., Blaha, P.: Solid state calculations using WIEN2k. Comput. Mater. Sci. 28, 259–273 (2003)

    Article  Google Scholar 

  21. Singh, D.: Simultaneous solution of diagonalization and self-consistency problems for transition-metal systems. Phys. Rev. B 40, 5428–5431 (1989)

    Article  Google Scholar 

  22. Sleijpen, G.L.G., Booten, A.G.L., Fokkema, D.R., Van der Vorst, H.A.: Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36(3), 595–633 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sleijpen, G.L.G., Van der Vorst, H.A.: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17(2), 401–425 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Teter, M.P., Payne, M., Allan, D.C.: Solution of Schrödinger’s equation for large systems. Phys. Rev. B 40(18), 12255 (1989)

    Article  Google Scholar 

  25. van Dam, H.J.J., van Lenthe, J.H., Sleijpen, G.L.G., van der Vorst, H.A.: An improvement of Davidson’s iteration method. J. Comput. Chem. 17(3), 267–272 (1996)

    Article  Google Scholar 

  26. VandeVondele, J., Hutter, J.: An efficient orbital transformation mathod for electronic structure calculations. J. Chem. Phys. 118(10), 4365–4369 (2003)

    Article  Google Scholar 

  27. Wood, D.M., Zunger, A.: A new method for diagonalising large matrices. J. Phys. A: Math. Gen. 18, 1343–1359 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  28. Yang, C., Gao, W., Meza, J.C.: On the convergence of the self-consistent field iteration for a class of nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 30, 1773–1788 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zhou, Y., Saad, Y., Tiago, M., Chelikowsky, J.: Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration. Phys. Rev. E 74, 066704 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Hofstätter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofstätter, H., Koch, O. An approximate eigensolver for self-consistent field calculations. Numer Algor 66, 609–641 (2014). https://doi.org/10.1007/s11075-013-9751-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9751-6

Keywords

Mathematics Subject Classifications (2010)

Navigation