Advertisement

Numerical Algorithms

, Volume 66, Issue 2, pp 399–430 | Cite as

A variational model and its numerical solution for local, selective and automatic segmentation

  • Lavdie Rada
  • Ke Chen
Original Paper

Abstract

Variational region-based segmentation models can serve as effective tools for identifying all features and their boundaries in an image. To adapt such models to identify a local feature defined by geometric constraints, re-initializing iterations towards the feature offers a solution in some simple cases but does not in general lead to a reliable solution. This paper presents a dual level set model that is capable of automatically capturing a local feature of some interested region in three dimensions. An additive operator spitting method is developed for accelerating the solution process. Numerical tests show that the proposed model is robust in locally segmenting complex image structures.

Keywords

Image selective segmentation Level set functions Euler-Lagrange equation 3D image segmentation Operator spitting 

Mathematics Subject Classifications

62H35 65N22 68U10 74G65 74G75 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)CrossRefGoogle Scholar
  2. 2.
    Aubert, G., Kornprobst, P.: Mathematical problems in image processing: partial differential equations and the calculus of variations. Springer (2001)Google Scholar
  3. 3.
    Badshah, N., Chen, K.: Image selective segmentation under geometrical constraints using an active contour approach. Commun. Comput. Phys. 7(4), 759–778 (2009)MathSciNetGoogle Scholar
  4. 4.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)CrossRefMATHGoogle Scholar
  5. 5.
    Chambolle, A.: Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J. Appl. Math. 55(3), 827–863 (1995)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 16321648 (2004)MathSciNetGoogle Scholar
  7. 7.
    Chan, T.F., Shen, J.H.: Image processing and analysis—variational, PDE, wavelet, and stochastic methods. SIAM Publications (2005)Google Scholar
  8. 8.
    Chan, T.F., Vese, L.A.: Active contours without edges. UCLA CAM Report, 98–53 (1998)Google Scholar
  9. 9.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)CrossRefMATHGoogle Scholar
  10. 10.
    Chan, T.F., Vese, L.A.: Active contour and segmentation models using geometric PDE’s for medical imaging. In: Malladi, R. (ed.) Geometric Methods in Bio-Medical Image Processing",Series:Mathematics and Visualization. Springer (2002)Google Scholar
  11. 11.
    Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)CrossRefGoogle Scholar
  12. 12.
    Comaniciu, D., Meer, P., Member, S.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern. Anal.Mach. Intell. 24, 603–619 (2002)CrossRefGoogle Scholar
  13. 13.
    Gout, C., Guyader, C.L., Vese, L.A.: Segmentation under geometrical consitions with geodesic active contour and interpolation using level set methods. Num. Algoritm. 39, 155–173 (2005)CrossRefMATHGoogle Scholar
  14. 14.
    Guyader, C.L., Gout, C.: Geodesic active contour under geometrical conditions theory and 3D applications. Num. Algoritm. 48, 105–133 (2008)CrossRefMATHGoogle Scholar
  15. 15.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comp. Vision 1(4), 321–331 (1988)CrossRefGoogle Scholar
  16. 16.
    Koepfler, G., Lopez, C., Morel, J.M.: A multiscale algorithm for image segmentation by variational method. SIAM J. Numer. Anal. 31, 282–299 (1994)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Li, C., Kao, C., Gore, J., Ding, Z.: Implicit active contours driven by local binary fitting energyIn: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–7. IEEE Computer Society, Washington, DC (2007)Google Scholar
  18. 18.
    Li, C., Kao, C., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-initialization: A new variational formulationProceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1 pp. 430–436. IEEE Computer Society, Washington, DC (2005)Google Scholar
  20. 20.
    Lie, J., Lysaker, M., Tai, X.C.: A variant of the level set method and applications to image segmentation. Math. Comput. 75(255), 1155–1174 (2006)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Lu, T., Neittaanmaki, P., Tai, X.C.: A parallel splitting-up method for partial differential equations and its application to navier-stokes equations. RAIRO Math. Model. Numer. Anal. 26(6), 673–708 (1992)MATHMathSciNetGoogle Scholar
  22. 22.
    Malik, J., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. Int. J. Comput. Vis. 43, 7–27 (2001). http://dl.acm.org/citation.cfm?id=543015.543016 CrossRefMATHGoogle Scholar
  23. 23.
    Malladi, R., Sethian, J.A.: A real-time algorithm for medical shape recoveryIn: Proceedings of International Conference on Computer Vision, pp. 304–310. Mumbai (1998)Google Scholar
  24. 24.
    Mitiche, A., Ben-Ayed, I.: Variational and Level Set Methods in Image Segmentation. Springer (2010)Google Scholar
  25. 25.
    Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Ning, J., Zhang, L., Zhang, D., Wub, C.: Interactive image segmentation by maximal similarity based region merging. Pattern Recognit. 43(2), 445–456 (2010)CrossRefMATHGoogle Scholar
  27. 27.
    Samson, C., Blanc-Féraud, L., Aubert, G., Zerubia, J.: A level set model for image classification. Int. J. Comput. Vision 40, 187–197 (2000)CrossRefMATHGoogle Scholar
  28. 28.
    Sapiro, G., Kimmel, R., Caselles, V.: Object detection and measurements in medical images via geodesic deformable contours. In: Melter, R.A., Wu, A.Y., Bookstein, F.L., Green, W.D. (eds.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series vol. 2573, pp. 366–378 (1995)Google Scholar
  29. 29.
    Sen, D., Pal, S.K.: Histogram thresholding using fuzzy and rough measures of association error. IEEE Trans. Image Process. 18(4), 879 –888 (2009)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Sethian, J.A.: Curvature and the evolution of fronts. Commun. Math. Phys. 101, 487–499 (1985). doi: 10.1007/BF01210742 CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Sethian, J.A.: Level set methods and fast marching methods: Evolving interfaces in computational geometry, fluid Mechanics, computer vision, and materials science. Cambridge University Press (1999). http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0521642043
  32. 32.
    Székely, A., Kelemen, C., Brechbühler, G.: Gerig, Segmentation of 3D objects from MRI volume data using constrained elastic deformations of flexible Fourier surface models. In: Ayache, N. (ed.) Computer Vision, Virtual Reality and Robotics in Medicine of Lecture Notes in Computer Science. vol. 905 pp 493–505. Springer Berlin, Heidelberg (1995)CrossRefGoogle Scholar
  33. 33.
    Trottenberg, U., Schuller, A.: Multigrid. Academic Press, Inc., Orlando (2001)MATHGoogle Scholar
  34. 34.
    Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the mumford and shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)CrossRefMATHGoogle Scholar
  35. 35.
    Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)CrossRefGoogle Scholar
  36. 36.
    Weickert, J., Kühne, G.: Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 43–57. (1995). doi: 10.1007/0-387-21810-6_3
  37. 37.
    Weickert, J., Romeny, B., Viergever, M.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7(3), 398 –410. (1998)CrossRefGoogle Scholar
  38. 38.
    Xie, X., Mirmehdi, M.: Radial basis function based level set interpolation and evolution for deformable modelling. Image Vision Comput. 29(3), 167–177 (2011)CrossRefGoogle Scholar
  39. 39.
    Zhang, J., Chen, K., Yu, B.: A multigrid algorithm for the 3D Chan-Vese model of variational image segmentation. Int. J. Comput. Math. 89(2), 160–189 (2012)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Zhang, Y., Matuszewski, B.J., Histace, A., Precioso, F., Kilgallon, J., Moore, C.: Boundary delineation in prostate imaging using active contour segmentation method with interactively defined object regions. Proc. Prostate Cancer Imaging’2010 LNCS 6367, 131–142 (2010)Google Scholar
  41. 41.
    Zucker, S.W.: Region growing: childhood and adolescence. Comput. Graph. Image Process. 5, 382–399 (1976)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Centre for Mathematical Imaging Techniques and Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations