Numerical Algorithms

, Volume 65, Issue 1, pp 43–68 | Cite as

On approximated ILU and UGS preconditioning methods for linearized discretized steady incompressible Navier-Stokes equations

Original Paper


When the artificial compressibility method in conjunction with high-order upwind compact finite difference schemes is employed to discretize the steady-state incompressible Navier-Stokes equations, in each pseudo-time step we need to solve a structured system of linear equations approximately by, for example, a Krylov subspace method such as the preconditioned GMRES. In this paper, based on the special structure and concrete property of the linear system we construct a structured preconditioner for its coefficient matrix and estimate eigenvalue bounds of the correspondingly preconditioned matrix. Numerical examples are given to illustrate the effectiveness of the proposed preconditioning methods.


Incompressible Navier-Stokes equations Artificial compressibility method Upwind compact finite difference scheme Preconditioning Krylov subspace method 

Mathematics Subject Classfication (2010)

65F10 65F15 76D05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bai, Z.-Z.: A class of modified block SSOR preconditioners for symmetric positive definite systems of linear equations. Adv. Comput. Math. 10, 169–186 (1999)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bai, Z.-Z.: Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems. Appl. Math. Comput. 109, 273–285 (2000)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bai, Z.-Z.: Modified block SSOR preconditioners for symmetric positive definite linear systems. Ann. Oper. Res. 103, 263–282 (2001)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bai, Z.-Z.: Structured preconditioners for nonsingular matrices of block two-by-two structures. Math. Comput. 75, 791–815 (2005)CrossRefGoogle Scholar
  5. 5.
    Bai, Z.-Z.: Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks. J. Comput. Appl. Math. 237, 295–306 (2013)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bai, Z.-Z., Duff, I.S., Wathen, A.J.: A class of incomplete orthogonal factorization methods. I: Methods and theories. BIT Numer. Math. 41, 53–70 (2001)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Bai, Z.-Z., Golub, G.H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J. Numer. Anal. 27, 1–23 (2007)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Bai, Z.-Z., Golub, G.H., Lu, L.-Z., Yin, J.-F.: Block triangular and skew-Hermitian splitting methods for positive-definite linear systems. SIAM J. Sci. Comput. 26, 844–863 (2005)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603–626 (2003)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98, 1–32 (2004)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Bai, Z.-Z., Ng, M.K.: Preconditioners for nonsymmetric block Toeplitz-like-plus-diagonal linear systems. Numer. Math. 96, 197–220 (2003)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Bai, Z.-Z., Ng, M.K., Wang, Z.-Q.: Constraint preconditioners for symmetric indefinite matrices. SIAM J. Matrix Anal. Appl. 31, 410–433 (2009)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Bai, Z.-Z.,Wang, D.-R.: Generalized matrix multisplitting relaxation methods and their convergence. Numer. Math. J. Chinese Univ. (English Ser.) 2, 87–100 (1993)MATHMathSciNetGoogle Scholar
  14. 14.
    Bai, Z.-Z., Yin, J.-F.: Modified incomplete orthogonal factorization methods using Givens rotations. Computing 86, 53–69 (2009)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Beam, R.M., Warming, R.F.: An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. J. Comput. Phys. 22, 87–110 (1976)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Benzi, M., Tůma, M.: A comparative study of sparse approximate inverse preconditioners. Appl. Numer. Math. 30, 305–340 (1999)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York (1979)MATHGoogle Scholar
  18. 18.
    Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–26 (1967)CrossRefMATHGoogle Scholar
  19. 19.
    Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22, 745–762 (1968)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Oxford University Press, New York (2005)Google Scholar
  21. 21.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)MATHGoogle Scholar
  22. 22.
    Greenbaum, A., Pták, V., Strakoš, Z.: Any nonincreasing convergence curve is possible for GMRES. SIAM J. Matrix Anal. Appl. 17, 465–469 (1996)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Gresho, P.M.: Incompressible fluid dynamics: some fundamental formulation issues. Ann. Rev. Fluid Mech. 23, 413–453 (1991)CrossRefMathSciNetGoogle Scholar
  24. 24.
    MacCormack, R.W., Candler, G.V.: The solution of the Navier-Stokes equations using Gauss-Seidel line relaxation. Comput. Fluids 17, 135–150 (1989)CrossRefMATHGoogle Scholar
  25. 25.
    Orlandi, P.: Fluid Flow Phenomena. A Numerical Toolkit. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  26. 26.
    Peaceman, D.W., Rachford Jr., H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appl. Math. 3, 28–41 (1955)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Pulliam, T.H., Chaussee, D.S.: A diagonal form of an implicit approximate-factorization algorithm. J. Comput. Phys. 39, 347–363 (1981)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Ran, Y.-H., Yuan, L.: On modified block SSOR iteration methods for linear systems from steady incompressible viscous flow problems. Appl. Math. Comput. 217, 3050–3068 (2010)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Shah, A., Guo, H., Yuan, L.: A third-order upwind compact scheme on curvilinear meshes for the incompressible Navier-Stokes equations. Commun. Comput. Phys. 5, 712–729 (2009)MathSciNetGoogle Scholar
  31. 31.
    Shah, A., Yuan, L.: Flux-difference splitting-based upwind compact schemes for the incompressible Navier-Stokes equations. Intern. J. Numer. Methods Fluids 61, 552–568 (2009)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Shah, A., Yuan, L., Khan, A.: Upwind compact finite difference scheme for time-accurate solution of the incompressible Navier-Stokes equations. Appl. Math. Comput. 215, 3201–3213 (2010)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Yoon, S., Jameson, A.: Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations. AIAA J. 26, 1025–1026 (1988)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Scientific/Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering ComputingAcademy of Mathematics and Systems Science, Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations