Numerical Algorithms

, Volume 64, Issue 4, pp 707–720

# Two finite difference schemes for time fractional diffusion-wave equation

• Jianfei Huang
• Yifa Tang
• Luis Vázquez
• Jiye Yang
Original Paper

## Abstract

Time fractional diffusion-wave equations are generalizations of classical diffusion and wave equations which are used in modeling practical phenomena of diffusion and wave in fluid flow, oil strata and others. In this paper we construct two finite difference schemes to solve a class of initial-boundary value time fractional diffusion-wave equations based on its equivalent partial integro-differential equations. Under the weak smoothness conditions, we prove that our two schemes are convergent with first-order accuracy in temporal direction and second-order accuracy in spatial direction. Numerical experiments are carried out to demonstrate the theoretical analysis.

## Keywords

Finite difference scheme Fractional diffusion-wave equation Integro-differential equation Euler method Crank–Nicolson method

## References

1. 1.
Agrawal, O.P.: Response of a diffusion-wave system subjected to deterministic and stochastic fields. Z. Angew. Math. Mech. 83(4), 265–274 (2003)
2. 2.
Becker-Kern, P., Meerschaert, M.M., Scheffler, H.P.: Limit theorem for continuous-time random walks with two time scales. J. Appl. Prob. 41, 455–466 (2004)
3. 3.
Chen, C., Liu, F., Turner, I., Anh, V.: A Fourier analysis method for the fractional diffusion equation describing sub-diffusion. J. Comput Phys. 227(2), 886–897 (2007)
4. 4.
Chen, C., Liu, F., Anh, V., Turner, I.: Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation. Math. Comput. 81, 345–366 (2012)
5. 5.
Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)
6. 6.
Du, R., Cao, W.R., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34(10), 2998–3007 (2010)
7. 7.
Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous-time finance. III, The diffusion limit. In: Mathematical Finance, Trends in Math, pp. 171–180. Birkhäuser, Basel (2001)Google Scholar
8. 8.
Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29, 129–143 (2002)
9. 9.
Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 229–307 (1984)
10. 10.
Li, C.P., Zhao, Z.G., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)
11. 11.
Li, X.J., Xu, C.J.: A space-time spectral method for the time fractional differential equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)
12. 12.
Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)
13. 13.
Liu, F., Shen, S., Anh, V., Turner, I.: Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. ANZIAM J. 46(E), 488–504 (2005)
14. 14.
Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 231, 160–176 (2009)
15. 15.
Lopez-Marcos, J.C.: A difference scheme for a nonlinear partial integrodifferential equation. SIAM J. Numer. Anal. 27(1), 20–31 (1990)
16. 16.
Lubich, Ch.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)
17. 17.
Mainardi, F.: Some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals. Springer, Wien (1997)Google Scholar
18. 18.
Meerschaert, M.M., Scalas, E.: Coupled continuous time random walks in finance. Physica A 370, 114–118 (2006)
19. 19.
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
20. 20.
Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica A 314, 749–755 (2002)
21. 21.
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivative, Theory and Applications. Gordon and Breach, New York (1993)Google Scholar
22. 22.
Sanz-Serna, J.M.: A numerical method for a partial integro-differential equations. SIAM J. Numer. Anal. 25(2), 319–327 (1988)
23. 23.
Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)
24. 24.
Meerschaert, M.M., Zhang, Y., Baeumerc, B.: Particle tracking for fractional diffusion with two time scales. Comput. Math. Appl. 59, 1078–1086 (2010)
25. 25.
Tang, T.: A finite difference scheme for partial integro-differential equations with a weakly singular kernel. Appl. Numer. Math. 11, 309–319 (1993)
26. 26.
Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264–274 (2006)
27. 27.
Zhang, Y.N., Sun, Z.Z., Wu, H.W.: Error estimates of Crank–Nicolson-type difference schemes for the subdiffusion equation. SIAM J. Numer. Anal. 49(6), 2302–2322 (2011)
28. 28.
Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation. SIAM J. Numer. Anal. 46(2), 1079–1095 (2008)
29. 29.
Zhuang, P., Liu, F., Anh, V., Turner, I.: Stability and convergence of an implicit numerical method for the nonlinear fractional reaction-subdiffusion process. IMA J. Appl. Math. 74(5), 645–667 (2009)

## Authors and Affiliations

• Jianfei Huang
• 1
• Yifa Tang
• 1
• Luis Vázquez
• 2
• Jiye Yang
• 1
1. 1.LSEC, ICMSEC, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina